L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and basis dependent detector flaws,” Quantum Inf. Comput. 10, 0060 (2010).

Ø. Marøy, L. Lydersen, and J. Skaar, “Security of quantum key distribution with arbitrary individual imperfections,” Phys. Rev. A 82, 032337 (2010).

[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12, 113026 (2010).

[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the detector blinding attack on quantum cryptography,” Nat. Photonics 4, 800–801 (2010).

[CrossRef]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph].

[CrossRef]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” N. J. Phys. 11, 065003 (2009).

[CrossRef]

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems: erratum,” 78, 019905 (2008).

V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. 8, 0622 (2008).

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).

[CrossRef]

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).

[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).

[CrossRef]

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).

[CrossRef]
[PubMed]

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).

[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).

[CrossRef]

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005).

[CrossRef]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).

[CrossRef]
[PubMed]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).

[CrossRef]
[PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

D. Gottesman and H.-K. Lo, “Proof of security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theory 49, 457–475 (2003).

[CrossRef]

W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).

[CrossRef]
[PubMed]

H. F. Chau, “Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate,” Phys. Rev. A 66, 060302 (2002).

[CrossRef]

A. Tomita and K. Nakamura, “Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm,” Opt. Lett. 27, 1827–1829 (2002).

[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).

[CrossRef]
[PubMed]

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).

[CrossRef]
[PubMed]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]
[PubMed]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).

[CrossRef]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).

[CrossRef]
[PubMed]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph].

[CrossRef]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).

[CrossRef]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems: erratum,” 78, 019905 (2008).

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).

[CrossRef]

V. Makarov, A. Anisimov, and S. Sauge, “Quantum hacking: adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve,” e-print arXiv:0809.3408v2 [quant-ph].

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing,” (IEEE Press, New York, Bangalore, India, 1984), pp. 175–179.

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).

[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing,” (IEEE Press, New York, Bangalore, India, 1984), pp. 175–179.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

H. F. Chau, “Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate,” Phys. Rev. A 66, 060302 (2002).

[CrossRef]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).

[CrossRef]
[PubMed]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).

[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the detector blinding attack on quantum cryptography,” Nat. Photonics 4, 800–801 (2010).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]
[PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).

[CrossRef]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).

[CrossRef]
[PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

D. Gottesman and H.-K. Lo, “Proof of security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theory 49, 457–475 (2003).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005).

[CrossRef]

A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).

[CrossRef]
[PubMed]

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).

[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).

[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).

[CrossRef]
[PubMed]

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).

[CrossRef]

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007).

[CrossRef]
[PubMed]

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).

[CrossRef]

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph].

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12, 113026 (2010).

[CrossRef]

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).

[CrossRef]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

D. Gottesman and H.-K. Lo, “Proof of security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theory 49, 457–475 (2003).

[CrossRef]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).

[CrossRef]
[PubMed]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).

[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).

[CrossRef]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and basis dependent detector flaws,” Quantum Inf. Comput. 10, 0060 (2010).

Ø. Marøy, L. Lydersen, and J. Skaar, “Security of quantum key distribution with arbitrary individual imperfections,” Phys. Rev. A 82, 032337 (2010).

[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” N. J. Phys. 11, 065003 (2009).

[CrossRef]

V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. 8, 0622 (2008).

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems: erratum,” 78, 019905 (2008).

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).

[CrossRef]

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005).

[CrossRef]

A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).

V. Makarov, A. Anisimov, and S. Sauge, “Quantum hacking: adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve,” e-print arXiv:0809.3408v2 [quant-ph].

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).

[CrossRef]

Ø. Marøy, L. Lydersen, and J. Skaar, “Security of quantum key distribution with arbitrary individual imperfections,” Phys. Rev. A 82, 032337 (2010).

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).

[CrossRef]

D. Mayers, “Advances in cryptology,” in “Proceedings of Crypto’96,”, vol. 1109, N. Koblitz, ed. (Springer, New York, 1996), vol. 1109, pp. 343–357.

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).

[CrossRef]
[PubMed]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12, 113026 (2010).

[CrossRef]

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).

[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).

[CrossRef]
[PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).

[CrossRef]

V. Makarov, A. Anisimov, and S. Sauge, “Quantum hacking: adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve,” e-print arXiv:0809.3408v2 [quant-ph].

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).

[CrossRef]
[PubMed]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).

[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the detector blinding attack on quantum cryptography,” Nat. Photonics 4, 800–801 (2010).

[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).

[CrossRef]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).

[CrossRef]
[PubMed]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph].

[CrossRef]

Ø. Marøy, L. Lydersen, and J. Skaar, “Security of quantum key distribution with arbitrary individual imperfections,” Phys. Rev. A 82, 032337 (2010).

[CrossRef]

L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and basis dependent detector flaws,” Quantum Inf. Comput. 10, 0060 (2010).

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems: erratum,” 78, 019905 (2008).

V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. 8, 0622 (2008).

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).

[CrossRef]
[PubMed]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12, 113026 (2010).

[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the detector blinding attack on quantum cryptography,” Nat. Photonics 4, 800–801 (2010).

[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).

[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).

[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).

[CrossRef]

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).

[CrossRef]

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599–627 (2007).

[CrossRef]

D. S. Bethune and W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).

[CrossRef]

D. Gottesman and H.-K. Lo, “Proof of security of quantum key distribution with two-way classical communications,” IEEE Trans. Inf. Theory 49, 457–475 (2003).

[CrossRef]

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005).

[CrossRef]

A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023–2038 (2001).

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph].

[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41 (2002).

[CrossRef]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009).

[CrossRef]

M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” N. J. Phys. 11, 045007 (2009).

[CrossRef]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” N. J. Phys. 11, 065003 (2009).

[CrossRef]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009).

[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12, 113026 (2010).

[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the detector blinding attack on quantum cryptography,” Nat. Photonics 4, 800–801 (2010).

[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).

[CrossRef]

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A 75, 032314 (2007).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

H. F. Chau, “Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate,” Phys. Rev. A 66, 060302 (2002).

[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).

[CrossRef]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).

[CrossRef]

Ø. Marøy, L. Lydersen, and J. Skaar, “Security of quantum key distribution with arbitrary individual imperfections,” Phys. Rev. A 82, 032337 (2010).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]
[PubMed]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).

[CrossRef]
[PubMed]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).

[CrossRef]
[PubMed]

W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).

[CrossRef]
[PubMed]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).

[CrossRef]
[PubMed]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]
[PubMed]

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quantum Inf. Comput. 9, 131–165 (2009).

L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and basis dependent detector flaws,” Quantum Inf. Comput. 10, 0060 (2010).

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).

V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. 8, 0622 (2008).

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).

[CrossRef]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).

[CrossRef]
[PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing,” (IEEE Press, New York, Bangalore, India, 1984), pp. 175–179.

Commercial QKD systems are available from at least two companies: ID Quantique (Switzerland), http://www.idquantique.com ; MagiQ Technologies (USA), http://www.magiqtech.com .

D. Mayers, “Advances in cryptology,” in “Proceedings of Crypto’96,”, vol. 1109, N. Koblitz, ed. (Springer, New York, 1996), vol. 1109, pp. 343–357.

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems: erratum,” 78, 019905 (2008).

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” e-print arXiv:1009.2683 [quant-ph] .

I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, “Perfect eavesdropping on a quantum cryptography system,” e-print arXiv:1011.0105 [quant-ph].

V. Makarov, A. Anisimov, and S. Sauge, “Quantum hacking: adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve,” e-print arXiv:0809.3408v2 [quant-ph].

Precisely, the quantum bit error rate (QBER) is the fraction given by the number of bits which differ in Alice’s and Bob’s raw key, divided by the length of the raw key.

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.

Osterm, PE4-115-14–15, http://osterm.ru/PAGE/MULTISTAGE.HTM , visited 3. August 2010.

When the temperature increases, the lattice vibrations in the APD increase. This increases the probability that the electron collides with the lattice, and therefore reduces the probability that the electron gains enough energy to trigger ionization of a new electron-hole pair. Therefore, to ensure that the electron gains ionization energy, the electric field must be larger, and thus the breakdown voltage is increased.

S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).

Marlow, NL4012, http://www.marlow.com/media/marlow/product/downloads/nl4012t/NL4012.pdf , visited 3. August 2010.

The detectors do not have any dark counts and are assumed blind at a temperature of about −40°C at the cold plate, or when the bias voltage is decreased by 0.97V. If one assumes that the APD temperature is equal to the cold plate temperature, this means that heating the detectors by 10K is equivalent to decreasing the bias voltage by about 1V.

The system actually sends the qubits in frames of 1075 qubits each. We initially made a mistake when counting them and used 1072 qubits, which is very close and does not affect the results.

We picked the second bit to simplify synchronization in our measurement setup. The results for the first bit should be very similar to the results for the second bit.

All references to the APD bias voltage are absolute valued, thus an APD biased “above” the breakdown voltage is in the Geiger mode. In practice the APDs are always reverse-biased.