Abstract

We report the design, implementation, and characterization of a grism-pair stretcher in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) that is capable of controlling a bandwidth of 440 nm. Our dynamic dispersion control scheme relies on the grism stretcher working in conjunction with an acousto-optic programmable dispersive filter (Dazzler) to jointly compensate large amount of material dispersion. A spectral interference technique is used to characterize the spectral phase of the grism stretcher. This ultra-broadband device opens up the way to generate sub-2-cycle laser pulses.

© 2010 OSA

Full Article  |  PDF Article

Corrections

Tai H. Dou, Raphael Tautz, Xun Gu, Gilad Marcus, Thomas Feurer, Ferenc Krausz, and Laszlo Veisz, "Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave: erratum," Opt. Express 19, 12634-12634 (2011)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-13-12634

References

  • View by:
  • |
  • |
  • |

  1. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
    [CrossRef] [PubMed]
  2. G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, “Route to intense single attosecond pulses,” N. J. Phys. 8, 19 (2006).
    [CrossRef]
  3. K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
    [CrossRef] [PubMed]
  4. V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
    [CrossRef] [PubMed]
  5. M. Geissler, J. Schreiber, and J. Meyer-ter-Vehn, “Bubble acceleration of electrons with few-cycle laser pulses,” N. J. Phys. 8(9), 186 (2006).
    [CrossRef]
  6. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
    [CrossRef] [PubMed]
  7. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14(18), 8168–8177 (2006).
    [CrossRef] [PubMed]
  8. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, Multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16(19), 14341–14352 (2008).
    [CrossRef] [PubMed]
  9. D. Herrmann, C. Homann, R. Tautz, M. Scharrer, P. St. J. Russell, F. Krausz, L. Veisz, and E. Riedle, “Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping,” Opt. Express 18(18), 18752–18762 (2010).
    [CrossRef] [PubMed]
  10. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [CrossRef] [PubMed]
  11. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  12. E. B. Treacy, “Optical pulse compression with diffraction grating,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  13. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
    [CrossRef]
  14. S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
    [CrossRef]
  15. S. Kane and J. Squier, “Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14(3), 661 (1997).
    [CrossRef]
  16. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31(22), 3363–3365 (2006).
    [CrossRef] [PubMed]
  17. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
    [CrossRef] [PubMed]
  18. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
    [CrossRef]
  19. J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2-3), 445–452 (2009).
    [CrossRef]
  20. A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
    [CrossRef]
  21. C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications,” Nouv. Rev. Opt. 4(4), 183–196 (1973).
    [CrossRef]

2010 (1)

2009 (3)

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
[CrossRef] [PubMed]

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2-3), 445–452 (2009).
[CrossRef]

2008 (2)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, Multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16(19), 14341–14352 (2008).
[CrossRef] [PubMed]

2007 (2)

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (1)

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

2000 (1)

1997 (1)

1995 (1)

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
[CrossRef]

1993 (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

1984 (1)

1973 (1)

C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications,” Nouv. Rev. Opt. 4(4), 183–196 (1973).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction grating,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Adachi, S.

Aquila, A. L.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Attwood, D. T.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Benavides, S.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

Bor, Z.

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Buck, A.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

Cheng, Z.

Cherepenin, V. A.

V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
[CrossRef] [PubMed]

Durfee, C.

Eidmann, K.

G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, “Route to intense single attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Eikema, K. S. E.

Fork, R. L.

Froehly, C.

C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications,” Nouv. Rev. Opt. 4(4), 183–196 (1973).
[CrossRef]

Gagnon, J.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Gaudiosi, D. M.

Geissler, M.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

M. Geissler, J. Schreiber, and J. Meyer-ter-Vehn, “Bubble acceleration of electrons with few-cycle laser pulses,” N. J. Phys. 8(9), 186 (2006).
[CrossRef]

Gibson, E. A.

Görbe, M.

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Gordon, J. P.

Goulielmakis, E.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Gullikson, E. M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Habs, D.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

Herrmann, D.

Hidding, B.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

Hofstetter, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Hogervorst, W.

Homann, C.

Huff, R.

Hur, M. S.

V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
[CrossRef] [PubMed]

Ishii, N.

Itatani, J.

Jimenez, R.

Kanai, T.

Kane, S.

Kapteyn, H. C.

Kienberger, R.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Klebniczki, J.

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Kleineberg, U.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Kobayashi, Y.

Kosuge, A.

Kovács, A. P.

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Krausz, F.

D. Herrmann, C. Homann, R. Tautz, M. Scharrer, P. St. J. Russell, F. Krausz, L. Veisz, and E. Riedle, “Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping,” Opt. Express 18(18), 18752–18762 (2010).
[CrossRef] [PubMed]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
[CrossRef] [PubMed]

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, “Route to intense single attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Kulagin, V. V.

V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
[CrossRef] [PubMed]

Kurdi, G.

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Lacourt, A.

C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications,” Nouv. Rev. Opt. 4(4), 183–196 (1973).
[CrossRef]

Laude, V.

Marcinkevicius, A.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

Martinez, O. E.

Meyer-Ter-Vehn, J.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, “Route to intense single attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

M. Geissler, J. Schreiber, and J. Meyer-ter-Vehn, “Bubble acceleration of electrons with few-cycle laser pulses,” N. J. Phys. 8(9), 186 (2006).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Nomura, Y.

Osvay, K.

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Pervak, V.

Riedle, E.

Russell, P. St. J.

Scharrer, M.

Schmid, K.

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009).
[CrossRef] [PubMed]

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

Schramm, U.

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

Schreiber, J.

M. Geissler, J. Schreiber, and J. Meyer-ter-Vehn, “Bubble acceleration of electrons with few-cycle laser pulses,” N. J. Phys. 8(9), 186 (2006).
[CrossRef]

Schultze, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Spielmann, Ch.

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Suk, H.

V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
[CrossRef] [PubMed]

Tautz, R.

Tavella, F.

Torizuka, K.

Tournois, P.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction grating,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Tsakiris, G.

G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, “Route to intense single attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

Ubachs, W.

Uiberacker, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Veisz, L.

Verluise, F.

Vienot, J. C.

C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications,” Nouv. Rev. Opt. 4(4), 183–196 (1973).
[CrossRef]

Watanabe, S.

Witte, S.

Wolf, A. L.

Yakovlev, V. S.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Yoshitomi, D.

Zacharias, H.

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2-3), 445–452 (2009).
[CrossRef]

Zheng, J.

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2-3), 445–452 (2009).
[CrossRef]

Zinkstok, R. T.

Appl. Phys. B (2)

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2-3), 445–452 (2009).
[CrossRef]

A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, “Dispersion control of a stretcher-compressor system with two-dimensional spectral interferometry,” Appl. Phys. B 80, 165–170 (2005).
[CrossRef]

Electron. Lett. (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31(11), 2052–2057 (1995).
[CrossRef]

E. B. Treacy, “Optical pulse compression with diffraction grating,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

N. J. Phys. (2)

G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, “Route to intense single attosecond pulses,” N. J. Phys. 8, 19 (2006).
[CrossRef]

M. Geissler, J. Schreiber, and J. Meyer-ter-Vehn, “Bubble acceleration of electrons with few-cycle laser pulses,” N. J. Phys. 8(9), 186 (2006).
[CrossRef]

Nouv. Rev. Opt. (1)

C. Froehly, A. Lacourt, and J. C. Vienot, “Time impulse response and time frequency response of optical pupils.:Experimental confirmations and applications,” Nouv. Rev. Opt. 4(4), 183–196 (1973).
[CrossRef]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-Ter-Vehn, D. Habs, and F. Krausz, “Few-cycle laser-driven electron acceleration,” Phys. Rev. Lett. 102(12), 124801 (2009).
[CrossRef] [PubMed]

V. V. Kulagin, V. A. Cherepenin, M. S. Hur, and H. Suk, “Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm,” Phys. Rev. Lett. 99(12), 124801 (2007).
[CrossRef] [PubMed]

Science (1)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the NOPCPA experimental setup. AOPDF: Acousto-optic programmable dispersive filter, CM: Chirped mirror.

Fig. 2
Fig. 2

Layout and raytracing of the grism stretcher. RM denotes a retro-reflecting roof mirror, β1, …,β5, the angles of the different frequency components with respect to the prism surfaces, L1, …, L6, the path travelled by these color components through the stretcher.

Fig. 3
Fig. 3

The efficiency curve (solid blue) shows the spectral amplitude function spanning over our design spectral range and the input spectrum (dashed red) used to measure the efficiency curve.

Fig. 4
Fig. 4

Simulated group delay curves of the dispersive components in the optical parametric amplifier chain. In our optimal solution the residual GD (dark blue line) between the grism stretcher (red line) and the total material dispersion from compressor (black line) and Dazzler crystal (green line) is fully compensated by the Dazzler (compensation range is the light blue area) to achieve Fourier-limited pulse duration. Residual GD to be compensated by the Dazzler (purple line) calculated based on the analysis by “Zheng & Zacharias” in [19] while using material parameters in our OPA system. Inset shows the full scale of the compressor and grism stretcher curves.

Fig. 5
Fig. 5

The optical setup for spectral interferometry measurement. HCF stands for hollow-core fiber, BS for beamsplitter, PDS for programmable delay stage, λ/2 for half-wave plate and P for polarizer.

Fig. 6
Fig. 6

(a) raw data from the spectral interference measurement. (b) spectral interference fringes seen at three different delay values 10 ps, 0 ps, −10 ps corresponding to three different wavelengths.

Fig. 7
Fig. 7

Spectral interference measurement of the absolute group delay over the wavelength range 660-900 nm. Simulated curves at three different grism separations 51 mm, 55.5 mm, and 61 mm, respectively; the standard deviation associated with each corresponding data set is ±0.3576, ±0.5927, ±0.5074 ps.

Tables (1)

Tables Icon

Table 1 Comparison of the two grism stretcher designs

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Φ ( ω ) = 2 [ ω c ( L 3 + L 6 + L e n d ) + ( L 1 + L 2 + L 4 + L 5 ) n p ω c + R ( ω ) ] ,
R ( ω ) = 2 π d [ ( L 2 + L 4 ) sin β 3 + L 3 cos ( β 5 α w ) ] ,
sin β 1 = sin θ i n n ,
β 2 = α w + β 1 ,
L 1 = L i n sin α w cos ( α w + β 1 ) ,
sin β 3 = sin β 2 λ n d ,
β 4 = α w + β 3 ,
L 2 = L 1 cos β 1 cos β 4 ,
sin β 5 = n sin β 4 ,
L 3 = L g r i s m cos β 5 ,
L 4 = L z sin α w cos β 3 ,
L z = L t i p L 1 sin β 1 L 2 sin β 4 L 3 sin β 5 L i n ,
L 5 = L 4 cos β 4 cos β 1 ,
L o u t = L 5 cos β 2 sin α w ,
L 6 = L o u t sin θ i n .
I ( ω , τ ) = | E 0 ( ω ) + E 1 ( ω ) e i ω τ | 2 = | E 0 ( ω ) | 2 | 1 + H ( ω ) e i ( ϕ ( ω ) ω τ ) | 2 = | E 0 ( ω ) | 2 [ 1 + H 2 ( ω ) + 2 H ( ω ) cos ( ϕ ( ω ) ω τ ) ] ,
d d ω ( ϕ ( ω ) ω τ ) = d ϕ ( ω ) d ω τ = G D ( ω ) τ .

Metrics