Abstract

We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985).
    [CrossRef]
  2. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986).
    [CrossRef]
  3. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993).
    [CrossRef] [PubMed]
  4. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
    [CrossRef]
  5. T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
    [CrossRef] [PubMed]
  6. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [CrossRef]
  7. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
    [CrossRef] [PubMed]
  8. P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
    [CrossRef]
  9. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
    [CrossRef]
  10. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
    [CrossRef]
  11. M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
    [CrossRef]
  12. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
    [CrossRef] [PubMed]
  13. P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
    [CrossRef] [PubMed]
  14. M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
    [CrossRef]
  15. M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
    [CrossRef] [PubMed]
  16. C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
    [CrossRef] [PubMed]
  17. J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
    [CrossRef]
  18. I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
    [CrossRef]
  19. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  20. S. Shingubara, “Fabrication of nanomaterials using porous alumina templates,” J. Nanopart. Res. 5(1/2), 17–30 (2003).
    [CrossRef]
  21. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
    [CrossRef] [PubMed]
  22. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
    [CrossRef]
  23. A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater. Chem. Phys. 91(2-3), 417–423 (2005).
    [CrossRef]
  24. T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
    [CrossRef] [PubMed]
  25. J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
    [CrossRef]
  26. K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
    [CrossRef]
  27. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
    [CrossRef]
  28. O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998).
    [CrossRef]
  29. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
    [CrossRef]
  30. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
    [CrossRef]
  31. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
    [CrossRef] [PubMed]
  32. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [CrossRef] [PubMed]
  33. A. M. Goodman and A. Rose, “Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts,” J. Appl. Phys. 42(7), 2823–2830 (1971).
    [CrossRef]
  34. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
    [CrossRef]
  35. K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
    [CrossRef] [PubMed]

2010

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
[CrossRef]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[CrossRef] [PubMed]

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

2009

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

2008

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

2006

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

2005

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater. Chem. Phys. 91(2-3), 417–423 (2005).
[CrossRef]

2004

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

2003

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

S. Shingubara, “Fabrication of nanomaterials using porous alumina templates,” J. Nanopart. Res. 5(1/2), 17–30 (2003).
[CrossRef]

2002

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

2000

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

1999

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

1998

O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

1995

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1993

1991

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

1986

1985

K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985).
[CrossRef]

1971

A. M. Goodman and A. Rose, “Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts,” J. Appl. Phys. 42(7), 2823–2830 (1971).
[CrossRef]

Afonso, C. N.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Aizpurua, J.

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Atwater, H. A.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Bando, Y.

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

Banerjee, P.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Becker, K.

Berthold, K.

K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985).
[CrossRef]

Birner, A.

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

Bonnell, D. A.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Brehm, G.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

Bryant, G. W.

Calame, M.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Chan, T. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Chang, C. H.

Chen, H. L.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Chen, K. H.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Chen, L. C.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Chen, L. Y.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Chen, Y.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Choi, H. C.

J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
[CrossRef]

Choi, J.

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

Chou, L.-J.

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

Chu, P. K.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Chu, S. W.

Chuang, T. H.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

Chui, H. C.

Conklin, D.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Creighton, J. A.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

del Coso, R.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Eadon, D. G.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

Fischer, A. J.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Flytzanis, C.

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Fukuta, K.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

García De Abajo, F. J.

Ghorbani, M.

A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater. Chem. Phys. 91(2-3), 417–423 (2005).
[CrossRef]

Golberg, D.

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

Gonzalo, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Goodman, A. M.

A. M. Goodman and A. Rose, “Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts,” J. Appl. Phys. 42(7), 2823–2830 (1971).
[CrossRef]

Gornik, E.

K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985).
[CrossRef]

Gösele, U.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

Hache, F.

Haglund, R. F.

Hamanaka, Y.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Han, T.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

He, J. H.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

Hillebrand, R.

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

Hofmeister, H.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

Holleitner, A. W.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Hong, L. S.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Höpfel, R. A.

K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985).
[CrossRef]

Hsieh, C.-H.

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

Hsu, C. F.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Hu, M. S.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Huang, B. R.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Huang, C. H.

Huang, Y. C.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Huang, Y. R.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

Hung, C. S.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Im, J. E.

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

Jessensky, O.

O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998).
[CrossRef]

Ji, R.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Jiang, J.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Kim, Y. R.

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

Koleske, D. D.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Lai, M. Y.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

Lan, Y. C.

Lang, X.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Lee, W.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Li, A. P.

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

Li, J.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Li, Y. G.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Lim, H.

J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
[CrossRef]

Lin, C. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

Lin, G.-R.

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

Lin, H. Y.

Lin, Y. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, C. Y.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Liu, N. W.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Liu, T. J.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, T. T.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, Y.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Liz-Marzán, L. M.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Luo, Y.

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

Magruder, R. H.

Mangold, M. A.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Müller, F.

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998).
[CrossRef]

Mulvaney, P.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Nakamura, A.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Nanayakkara, S.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Nielsch, K.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Oh, S. L.

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

Park, T. H.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Pryce, I. M.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Qian, S. X.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Qiu, T.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Requejo-Isidro, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Ricard, D.

Romero, I.

Rose, A.

A. M. Goodman and A. Rose, “Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts,” J. Appl. Phys. 42(7), 2823–2830 (1971).
[CrossRef]

Saedi, A.

A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater. Chem. Phys. 91(2-3), 417–423 (2005).
[CrossRef]

Sauer, G.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

Schilling, J.

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

Schneider, S.

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

Shen, C. H.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Shin, H. S.

J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
[CrossRef]

Shingubara, S.

S. Shingubara, “Fabrication of nanomaterials using porous alumina templates,” J. Nanopart. Res. 5(1/2), 17–30 (2003).
[CrossRef]

Solis, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Son, M. S.

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

Therien, M. J.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

Tsai, K. T.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

Tsai, T. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, D. W.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, H. H.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wang, J. K.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wang, K. K.

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

Wang, S. Y.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Wang, Y. L.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wehrspohn, R. B.

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

Weiss, C.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Wittig, J. E.

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Yang, J.

J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
[CrossRef]

Yang, L.

Yoo, K. H.

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

You, G. J.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Yu, X.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Zhang, W.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Zhou, P.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Zuhr, R. A.

ACS Appl. Mater. Interfaces

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

ACS Nano

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999).
[CrossRef]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

Appl. Phys. Lett.

O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998).
[CrossRef]

K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985).
[CrossRef]

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010).
[CrossRef]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[CrossRef]

Chem. Commun. (Camb.)

J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010).
[CrossRef]

J. Am. Chem. Soc.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

J. Appl. Phys.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[CrossRef]

A. M. Goodman and A. Rose, “Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts,” J. Appl. Phys. 42(7), 2823–2830 (1971).
[CrossRef]

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002).
[CrossRef]

J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003).
[CrossRef]

J. Chem. Soc., Faraday Trans.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

J. Nanopart. Res.

S. Shingubara, “Fabrication of nanomaterials using porous alumina templates,” J. Nanopart. Res. 5(1/2), 17–30 (2003).
[CrossRef]

J. Nanosci. Nanotechnol.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Mater. Chem. Phys.

A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater. Chem. Phys. 91(2-3), 417–423 (2005).
[CrossRef]

Nano Lett.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008).
[CrossRef] [PubMed]

Nat. Mater.

M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

PLoS ONE

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Science

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of the back-end alumina layer (barrier layer) of an Ag/AAO film (scale bar: 300 nm). Inset: SEM image of the Ag/AAO substrate where the back-end alumina barrier layer has been chemically etched to expose deposited silver nanoparticles inside the nanochannels (scale bar: 100 nm). (b) EDS spectrum of the Ag/AAO film. (c) The extinction spectra of an AAO film without Ag (black line) and an Ag/AAO (blue line) film. The wavelengths of light illumination for photoconductivity measurements are indicated with Red (R), Green (G), and Blue lines (B). (d) Schematic diagram of the experimental setup for photoconductivity measurements.

Fig. 2
Fig. 2

Photoconductance for RGB excitations on (a) an AAO film without embedded Ag nanoparticles, and (b) an Ag/AAO film. The shaded (red, illumination wavelength λR = 633 nm; green, λG = 532 nm; blue, λB = 405 nm) and the unshaded regions mark the light-on and light-off periods, respectively. Photocurrent induced under continuous light illumination for twenty minutes is shown in (c) for an AAO film without Ag nanoparticles and (d) for an Ag/AAO film. The applied V bias is 20 V.

Fig. 3
Fig. 3

(a) Photoresponses of an Ag/AAO substrate to R, G, and B illumination with varied power density of 0.526~5.26 μW/μm2 at V bias = 20 V. (b) Photoresponse behaviors under illumination-on and -off cycles; P R,G and B = 5.26 μW/μm2; V bias = 20 V. (c) Enlarged view of a single on/off cycle of the three laser lights showing the response and recovery time within 0.15 sec; P R,G and B = 5.26 μW/μm2; V bias = 20 V.

Fig. 4
Fig. 4

Measured I-V characteristics of the Ag/AAO substrate with and without R, G, and B excitation. (a) P R,G and B = 2.63 μW/μm2; V bias = 1~20 V. (b) P R,G and B = 5.26 μW/μm2; V bias = 1~20 V.

Metrics