Abstract

In this paper, a Mach-Zehnder silicon nanoplasmonic electro-optic modulator is proposed and theoretically analyzed. It is composed of horizontal metal-SiO2-Si-metal plasmonic slot waveguides for phase shifting and ultracompact V-shape splitter/combiner to link the plasmonic slot waveguides and the conventional Si dielectric waveguides. The proposed modulator can be directly integrated into existing Si electronic photonic integrated circuits (EPICs) and be fabricated using standard Si complementary metal-oxide-semiconductor (CMOS) technology. The modulator’s parameters are optimized through systematic 2-dimensional numerical simulations. For a modulator with 3-µm-long Ag-SiO2(2 nm)-Si(50 nm)-Ag phase shifter and 0.35-µm-long splitter/combiner operating at 1.55-µm wavelength, simulation shows an insertion loss of ~–8 dB, an extinction ratio of ~7.3 dB — with a switching voltage of ~5.6 V, and a bandwidth of ~500 GHz. A possible approach to reduce the switching voltage is addressed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  3. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer Science + Business Media LLC, 2007).
  4. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  6. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
    [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  8. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [CrossRef] [PubMed]
  9. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
    [CrossRef]
  10. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  11. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009).
    [CrossRef]
  12. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  13. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
    [CrossRef]
  14. T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
    [CrossRef]
  15. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  16. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  17. D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
    [CrossRef]
  18. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
    [CrossRef]
  19. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
    [CrossRef] [PubMed]
  20. S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
    [CrossRef]
  21. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
    [CrossRef]
  22. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [CrossRef]
  23. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
    [CrossRef]
  24. D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
    [CrossRef]
  25. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [CrossRef]
  26. X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
    [CrossRef]
  27. http://www.rsoftinc.com
  28. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
    [CrossRef] [PubMed]
  29. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
    [CrossRef]
  30. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  31. S. Deleonibus, Electronic device architectures for the nano-CMOS era: from ultimate CMOS scaling to beyond CMOS devices (Pan Stanford Publishing, 2009).
  32. J. Takahara, S. Yamagishi, A. Morimoto, and T. Kobayashi, “Nanostructure optical phase modulator and detector using surface plasmon polariton,” Pacific Rim Conf. on Lasers and Electro-optics 1997, 42–42.
  33. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
    [CrossRef] [PubMed]
  34. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
    [CrossRef]
  35. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 25112521 (2007).
    [CrossRef]
  36. D. Palik, Handbook of Optical Constants of Solid (Academic, New York, 1985).
  37. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  38. J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure” IEEE Trans. Electron. Dev. 39(7), 1732–1739 (1992).
    [CrossRef]
  39. R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1986).
  40. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [CrossRef] [PubMed]
  41. H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
    [CrossRef]
  42. S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).
  43. K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

2010 (2)

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

2009 (8)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009).
[CrossRef]

2008 (6)

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

2007 (6)

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 25112521 (2007).
[CrossRef]

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
[CrossRef] [PubMed]

2006 (5)

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[CrossRef] [PubMed]

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

2005 (2)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

2004 (3)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

2001 (1)

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

1998 (1)

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

1992 (1)

J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure” IEEE Trans. Electron. Dev. 39(7), 1732–1739 (1992).
[CrossRef]

1986 (1)

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Abushagur, M. A. G.

Anderson, E.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Asano, K.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Atkinson, R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Baba, Y.

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Bokor, J.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Bopp, M.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Brongersma, M. L.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Buchwald, W.

Buiu, O.

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Cassan, E.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Chang, L. L.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Chau, K. J.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

Chen, L.

Choi, Y. K.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Coronel, P.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Crozat, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Dainesi, P.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Dal Negro, L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Davey, W. M.

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

Declercq, M.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Dickson, W.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

Evans, P. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Fan, S.

Fedeli, J. M.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Garcia-Meca, C.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Gérard, D.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

Guizal, B.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Hall, S.

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hendren, W. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Hisamoto, D.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Hryciw, A.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef]

Hu, C. M.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Huang, X. J.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Ionecu, A. K.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Irvine, S. E.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Iwai, H.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Jun, Y. C.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef]

Jung, J.

Katsumata, Y.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Kedzierski, J.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Khelif, A.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

King, T. J.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Kuo, C.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Laude, V.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lee, W. C.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, S. W.

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

Lu, Y.

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

Lu, Z.

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lyan, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Marris-Morini, D.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Marti, J.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Martin, O. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martinez, A.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Min, C.

Mitrovic, I. Z.

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

Momose, H. S.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Morifuji, E.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Morimoto, T.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Moselund, K. E.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Nakamura, S.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Ohguro, T.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Olivo, P.

J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure” IEEE Trans. Electron. Dev. 39(7), 1732–1739 (1992).
[CrossRef]

Ortuno, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Peale, R. E.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Qiu, M.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Rasigade, G.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Ricco, B.

J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure” IEEE Trans. Electron. Dev. 39(7), 1732–1739 (1992).
[CrossRef]

Rivallin, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Roux, X. L.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sadani, B.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

Salvador, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Shakya, J.

Skotnicki, T.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Soref, R.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Subramanian, V.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Sune, J.

J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure” IEEE Trans. Electron. Dev. 39(7), 1732–1739 (1992).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Takeuchi, H.

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Van Labeke, D.

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

Veronis, G.

Vivien, L.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wahsheh, R. A.

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Wurtz, G. A.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Xiao, M.

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Yoshitomi, T.

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Zayats, A. V.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Adv. Phys. (1)

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. K. Ionecu, ““Compact gate-all-around silicon light modulator for ultra high speed operation”, Sensor. Actuat,” Adv. Phys. 130, 220–227 (2006).

Appl. Phys. Lett. (4)

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008).
[CrossRef]

IEEE Tran. Electron. Dev. (1)

H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, ““Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Tran. Electron. Dev. 45(3), 691–700 (1998).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure” IEEE Trans. Electron. Dev. 39(7), 1732–1739 (1992).
[CrossRef]

X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, “Sub-50nm p-channel FinFET,” IEEE Trans. Electron. Dev. 48(5), 880–886 (2001).
[CrossRef]

J. Lightwave Technol. (1)

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25(9), 25112521 (2007).
[CrossRef]

J. Telecommun. Info. Technol. (1)

S. Hall, O. Buiu, I. Z. Mitrovic, Y. Lu, and W. M. Davey, “Review and perspective of high-κ dielectrics on silicon,” J. Telecommun. Info. Technol. 2, 33–43 (2007).

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, Y. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Laser Photon. Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

N. J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Nano Lett. (2)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef]

Nat. Photonics (2)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Nature (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

D. Gérard, V. Laude, B. Sadani, A. Khelif, D. Van Labeke, and B. Guizal, “Modulation of the extraordinary optical transmission by surface acoustic waves,” Phys. Rev. B 76(23), 235427 (2007).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Proc. IEEE (1)

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Proc. SPIE (1)

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc. SPIE 704, 32–37 (1986).

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other (7)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer Science + Business Media LLC, 2007).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).

D. Palik, Handbook of Optical Constants of Solid (Academic, New York, 1985).

http://www.rsoftinc.com

S. Deleonibus, Electronic device architectures for the nano-CMOS era: from ultimate CMOS scaling to beyond CMOS devices (Pan Stanford Publishing, 2009).

J. Takahara, S. Yamagishi, A. Morimoto, and T. Kobayashi, “Nanostructure optical phase modulator and detector using surface plasmon polariton,” Pacific Rim Conf. on Lasers and Electro-optics 1997, 42–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Three-dimensional (3-D) schematic of the proposed Si nanoplasmonic MZI modulator, which is composed of a splitter to deliver light from the input Si dielectric waveguide into two plasmonic waveguides, horizontal metal-SiO2-Si-metal MOS-type plasmonic slot waveguide whose optical properties can be modified by the applied voltage, and a combiner to combine light from two plasmonic waveguides to the output Si waveguide. The device is fabricated on a silicon-on-insulator substrate and is finally covered by a SiO2 cladding layer (not shown in the Figure).

Fig. 2
Fig. 2

(a) A schematic structure for light squeezes from a 400-nm-wide Si waveguide to a Ag-SiO2(5nm)-Si(50nm)-Ag plasmonic slot waveguides; (b) Field distribution in the structure launched by 1.55-μm light; and (c) the SPP waves detected at Point A and Point B as indicated in Fig. 2(b), from which the real effective modal index, neff, and the propagation length, Lp, can be calculated based on Eq. (1).

Fig. 3
Fig. 3

Normalized electric field spatial distributions in three plasmonic slot waveguides calculated from the 2-D FDTD simulation: (a) Ag-SiO2(50 nm)-Ag; (b) Ag-SiO2(50 nm)-Ag; and (c) Ag-SiO2(5 nm)-Si(45 nm)-Ag. The corresponding neff and Lp values are also indicated.

Fig. 4
Fig. 4

(a) The real effective modal index, neff, and (b) the propagation length, Lp, of various plasmonic slot waveguides as a function of the Si refractive index, nSi. The dneff/dnSi and dLp/dnSi values, which are extracted by linearly fitting the data points obtained from the 2-D FDTD simulation, are also indicated.

Fig. 5
Fig. 5

(a) The real effective modal index, neff; (b) the propagation length, Lp; (c) dneff/dnSi; (d) the product of dneff/dnSi × Lp; and (e) dneff/dnSiO2 of the Ag-SiO2-Si-Ag plasmonic slot waveguides with an identical total slot width (WSi + WSiO2) of 50 nm as a function of the SiO2 width, WSiO2. The inset shows the schematic structure of the plasmonic slot waveguides.

Fig. 6
Fig. 6

(a) The real effective modal index, neff; (b) the propagation length, Lp; and (c) dneff/dnSi as a function of Si width (WSi) for Ag-SiO2-Si-Ag plasmonic slot waveguides with the oxide width of 0, 1, 2, 5, and 10 nm, respectively.

Fig. 7
Fig. 7

(a) The real effective modal index, neff and (b) the propagation length, Lp, extracted from the 3-D FDTD simulation for various plasmonic slot waveguides as a function of the waveguide thickness. The corresponding values extracted from the 2-D simulation are also shown for comparison.

Fig. 8
Fig. 8

(a) The coupling efficiency as a function of the splitter length to deliver 1.55-μm light from the 400-nm-wide Si waveguide to two identical plasmonic slot waveguides with various oxide thicknesses, the inset shows the schematic of the splitter; (b) Field distribution in the 0.35-µm-long splitter between the 400-nm-wide Si waveguide and two Ag-SiO2(2 nm)-Si(50 nm)-Ag plasmonic slot waveguides, the coupling efficiency at each branch is 41.9%.

Fig. 9
Fig. 9

(a) The coupling efficiencies into the left and right braches (i.e., the) as a function of the displacement for light delivering from the 400-nm-wide Si waveguide to two Ag-SiO2(2 nm)-Si(50 nm)-Ag plasmonic slot waveguides through a 0.35-µm long asymmetric splitter, as shown schematically in the inset. (b) Field distribution in the structure with the displacement of 60 nm, the coupling efficiencies to the left and right branches are 17.7% and 56.8%, respectively.

Fig. 10
Fig. 10

The light wavelength dependence of the coupling efficiency for light delivering from the 400-nm wide Si waveguide to two identical plasmonic slot waveguides with various SiO2 thicknesses through a 0.35-µm long symmetric splitter.

Fig. 11
Fig. 11

Normalized output power of the MZI nanoplasmonic modulators as a function of the Si refractive index variation (ΔnSi) in one of MOS-type plasmonic slot waveguide arms. The MZI modulator has 0.35-µm-long splitter/combiner and 3-µm-long MOS-type metal-SiO2(WSiO2)-Si(50 nm)-metal plasmonic slot waveguides as the phase shifter.

Fig. 12
Fig. 12

Field distribution for the plasmonic modulator with 3-µm-long Ag-SiO2(2 nm)-Si(50 nm)-Ag phase shifter and 0.35-µm-long splitter/combiner at (a) “on” state (ΔnSi = 0), and (b) “off” state (ΔnSi = −0.22). The powers at the input Si waveguide and the output Si waveguide are monitored.

Fig. 13
Fig. 13

The electron distributions in the Si layer of the Ag-SiO2(2 nm)-Si(50 nm)-Ag MOS capacitor under an applied voltage ranging from 0 to 6 V, the n-type Si has an uniform doping level of 5 × 1018 cm−3. The inset shows Si index as a function of electron concentration calculated from Eq. (4) (the Drude model) and Eq. (3). The free electron concentration distribution is translated to the Si index distribution based on the Drude model.

Fig. 14
Fig. 14

The neff medication (Δneff) of Ag-SiO2-Si(50nm)-Ag plasmonic waveguide phase shifter as a function of the applied voltage. The SiO2 thickness ranges from 2 to 5 nm. The required voltages for the π-phase shift (Vπ) in the 3-µm long plasmonic waveguides are indicated.

Fig. 15
Fig. 15

The transient response of the electron concentration near the SiO2/Si interface for Ag-SiO2(2 nm)-Si(50 nm)-Ag and Ag-SiO2(5 nm)-Si(50 nm)-Ag phase shifters. The applied voltage is between 0 to 5 V for the former and between 0 to 12 V for the latter with the ramp and fall times of the gate voltage of 0.05 ps.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( x , z ) = E ( x ) exp ( i 2 π n e f f z λ 0 z 2 L p )
L π = λ 0 2 Δ n e f f
Δ n S i = 8.8 × 10 22 Δ N 8.5 × 10 18 Δ P 0.8 Δ α S i = 8.5 × 10 18 Δ N + 6.0 × 10 18 Δ P
ε ( ω ) = ε ' ( ω ) + i ε " ( ω ) = ε N e 2 m * ε 0 ( ω 2 + i ω / τ )
f max = 1 t r + t f
f max = 1 2 π × R C

Metrics