Abstract

We demonstrate patterned polarizers for visible wavelengths using dichroic dye in a liquid crystal polymer (LCP) host. Contact lithography is used to pattern a thin alignment layer, which subsequently transfers the pattern to the LCP. A gray dichroic dye mixture for the visible spectrum is optimized and implemented along with LCP to fabricate this polarizer. A peak extinction ratio of 41 was measured at a 633 nm wavelength, while simultaneously showing patterns as small as 3 μm. Finally, multi layer films are demonstrated by fabricating a two layer patterned circular polarizer consisting of a quarter-wave retarder and a color polarizer. Our process has applications in three-dimensional displays, interferometry, optical storage, and polarimeters.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Guo and D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36(8), 2268–2271 (1997).
    [CrossRef]
  2. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [CrossRef] [PubMed]
  3. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [CrossRef]
  4. Y. L. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 microm,” Appl. Opt. 47(20), 3555–3560 (2008).
    [CrossRef] [PubMed]
  5. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [CrossRef] [PubMed]
  6. X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34(23), 3619–3621 (2009).
    [CrossRef] [PubMed]
  7. N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34(4), 558–559 (2005).
    [CrossRef]
  8. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002).
    [CrossRef] [PubMed]
  9. B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38(2), 220–226 (1999).
    [CrossRef]
  10. A. J. Pidduck, G. P. BryanBrown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” in (Amer Inst Physics, 1996), 1723–1728.
  11. B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76(10), 1240–1242 (2000).
    [CrossRef]
  12. J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” in (Elsevier Science Bv, 2003), 467–471.
  13. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
    [CrossRef]
  14. G. Myhre and S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48(32), 6152–6158 (2009).
    [CrossRef] [PubMed]
  15. M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
    [CrossRef]
  16. J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
    [CrossRef]
  17. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
    [CrossRef]
  18. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
    [CrossRef]
  19. K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
    [CrossRef]
  20. K. L. Marshall, K. Adlesberger, B. Kolodzie, G. Myhre, and D. W. Griffin, “A second-generation liquid crystal phase-shifting point-diffraction interferometer employing structured substrates,” in Optical Diagnostics, (SPIE, 2005), 58800D.
  21. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
    [CrossRef]
  22. N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
    [CrossRef]
  23. N. Kawatsuki, C. Suehiro, and T. Yamamoto, “Photoinduced Alignment of Photo-Cross-Linkable Side-Chain Liquid Crystalline Copolymers Comprising Cinnamoylethoxybiphenyl and Cyanobiphenyl Groups,” Macromolecules 31(18), 5984–5990 (1998).
    [CrossRef]
  24. R. Rosenhauer, J. Stumpe, R. Gimenez, M. Pinol, J. L. Serrano, and A. Vinuales, “All-in-one layer: Anisotropic emission due to light-induced orientation of a multifunctional polymer,” (2007).
  25. D. Nečas and P. Klapetek, “Gwyddion” (GNU General Public License, 2008), retrieved http://gwyddion.net/ .

2010 (2)

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[CrossRef] [PubMed]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[CrossRef] [PubMed]

N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
[CrossRef]

2006 (1)

K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
[CrossRef]

2005 (1)

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34(4), 558–559 (2005).
[CrossRef]

2002 (1)

2000 (1)

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76(10), 1240–1242 (2000).
[CrossRef]

1999 (2)

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38(2), 220–226 (1999).
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
[CrossRef]

1998 (3)

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[CrossRef]

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

N. Kawatsuki, C. Suehiro, and T. Yamamoto, “Photoinduced Alignment of Photo-Cross-Linkable Side-Chain Liquid Crystalline Copolymers Comprising Cinnamoylethoxybiphenyl and Cyanobiphenyl Groups,” Macromolecules 31(18), 5984–5990 (1998).
[CrossRef]

1997 (1)

J. Guo and D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36(8), 2268–2271 (1997).
[CrossRef]

1995 (1)

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
[CrossRef]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Adelsberger, K.

K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
[CrossRef]

Bermak, A.

Boussaid, F.

Brady, D. J.

J. Guo and D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36(8), 2268–2271 (1997).
[CrossRef]

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Chigrinov, V. G.

Craighead, H. G.

Deguzman, P. C.

Du, T.

Engheta, N.

Fujio, K.

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34(4), 558–559 (2005).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Griffin, D. W.

K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
[CrossRef]

Gruev, V.

Guo, J.

J. Guo and D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36(8), 2268–2271 (1997).
[CrossRef]

Harnett, C. K.

Jones, M. W.

Kawatsuki, N.

N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
[CrossRef]

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34(4), 558–559 (2005).
[CrossRef]

N. Kawatsuki, C. Suehiro, and T. Yamamoto, “Photoinduced Alignment of Photo-Cross-Linkable Side-Chain Liquid Crystalline Copolymers Comprising Cinnamoylethoxybiphenyl and Cyanobiphenyl Groups,” Macromolecules 31(18), 5984–5990 (1998).
[CrossRef]

Kelly, S. M.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
[CrossRef]

Kim, J.-H.

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Kimball, B. R.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
[CrossRef]

Kley, E.-B.

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38(2), 220–226 (1999).
[CrossRef]

Klotzkin, D. J.

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Kumar, S.

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Lazarus, N.

Lee, S.-D.

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Mahajan, M. P.

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76(10), 1240–1242 (2000).
[CrossRef]

Marshall, K. L.

K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
[CrossRef]

Meier, J. T.

Myhre, G.

G. Myhre and S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48(32), 6152–6158 (2009).
[CrossRef] [PubMed]

K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
[CrossRef]

Nersisyan, S.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
[CrossRef]

Nishikawa, M.

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[CrossRef]

Nordin, G. P.

Ortu, A.

Pau, S.

Rosenblatt, C.

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76(10), 1240–1242 (2000).
[CrossRef]

Sakai, T.

N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
[CrossRef]

Schadt, M.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
[CrossRef]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Schnabel, B.

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38(2), 220–226 (1999).
[CrossRef]

Schuster, A.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
[CrossRef]

Seiberle, H.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Steeves, D. M.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
[CrossRef]

Suehiro, C.

N. Kawatsuki, C. Suehiro, and T. Yamamoto, “Photoinduced Alignment of Photo-Cross-Linkable Side-Chain Liquid Crystalline Copolymers Comprising Cinnamoylethoxybiphenyl and Cyanobiphenyl Groups,” Macromolecules 31(18), 5984–5990 (1998).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Tabiryan, N.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
[CrossRef]

Taheri, B.

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[CrossRef]

Takatsuka, H.

N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
[CrossRef]

Tsutsumi, R.

N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
[CrossRef]

Van der Spiegel, J.

Wen, B.

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76(10), 1240–1242 (2000).
[CrossRef]

West, J. L.

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[CrossRef]

Wyrowski, F.

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38(2), 220–226 (1999).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, C. Suehiro, and T. Yamamoto, “Photoinduced Alignment of Photo-Cross-Linkable Side-Chain Liquid Crystalline Copolymers Comprising Cinnamoylethoxybiphenyl and Cyanobiphenyl Groups,” Macromolecules 31(18), 5984–5990 (1998).
[CrossRef]

Zhao, X.

Zhou, Y. L.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

M. Nishikawa, B. Taheri, and J. L. West, “Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure,” Appl. Phys. Lett. 72(19), 2403–2405 (1998).
[CrossRef]

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76(10), 1240–1242 (2000).
[CrossRef]

Chem. Lett. (1)

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34(4), 558–559 (2005).
[CrossRef]

J. Appl. Phys. (1)

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys. 108(3), 033101 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid-crystals by lineraly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34(Part 1, No. 6A), 3240–3249 (1995).
[CrossRef]

Macromolecules (2)

N. Kawatsuki, R. Tsutsumi, H. Takatsuka, and T. Sakai, “Influence of Alkylene Spacer Length on Thermal Enhancement of Photoinduced Optical Anisotropy in Photo-Cross-Linkable Liquid Crystalline Polymeric Films and Their Composites with Non-Liquid-Crystalline Monomers,” Macromolecules 40(17), 6355–6360 (2007).
[CrossRef]

N. Kawatsuki, C. Suehiro, and T. Yamamoto, “Photoinduced Alignment of Photo-Cross-Linkable Side-Chain Liquid Crystalline Copolymers Comprising Cinnamoylethoxybiphenyl and Cyanobiphenyl Groups,” Macromolecules 31(18), 5984–5990 (1998).
[CrossRef]

Mol. Cryst. Liquid Cryst. (1)

K. L. Marshall, K. Adelsberger, G. Myhre, and D. W. Griffin, “The LCPDI: A Compact and Robust Phase-Shifting Point-Diffraction Interferometer Based on Dye-Doped LC Technology,” Mol. Cryst. Liquid Cryst. 454(1), 23–45 (2006).
[CrossRef]

Nature (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Opt. Eng. (2)

B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38(2), 220–226 (1999).
[CrossRef]

J. Guo and D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36(8), 2268–2271 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Other (5)

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” in (Elsevier Science Bv, 2003), 467–471.

K. L. Marshall, K. Adlesberger, B. Kolodzie, G. Myhre, and D. W. Griffin, “A second-generation liquid crystal phase-shifting point-diffraction interferometer employing structured substrates,” in Optical Diagnostics, (SPIE, 2005), 58800D.

A. J. Pidduck, G. P. BryanBrown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” in (Amer Inst Physics, 1996), 1723–1728.

R. Rosenhauer, J. Stumpe, R. Gimenez, M. Pinol, J. L. Serrano, and A. Vinuales, “All-in-one layer: Anisotropic emission due to light-induced orientation of a multifunctional polymer,” (2007).

D. Nečas and P. Klapetek, “Gwyddion” (GNU General Public License, 2008), retrieved http://gwyddion.net/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Transmission spectrum of each dye when integrated into a 10 mg/mL CHCl3 polarizer. (b) Three 10 mg/mL polarizers viewed through a horizontal (left) and vertical polarizer (right). (c) Dye solutions (10 μg/mL dye in CHCl3). (d) Different colors can be obtained using different ratios and concentrations of the dyes. (e) CIE xyY plot of dye colors.

Fig. 2
Fig. 2

(a) Extinction ratio (dashed) and polarizance (solid) on the left and right axis respectively are shown as a function of wavelength. Three different concentrations of dye are shown; 30, 20, and 10 mg/mL CHCl3. The vertical dotted line at 633 nm shows the wavelength at which the polarizer was imaged at and also has the peak extinction ratio. The horizontal dotted lines indicate the maximum visibility in (b). (b)Visibility data for features ranging from 31 to 3.1 μm, the maximum visibility is shown by the solid line for each dye concentration. (c) Magnified images of the 30 mg/mL polarizer with a 633 nm HeNe source polarized horizontally (top) and vertically (bottom).

Fig. 3
Fig. 3

(a) The standard deviation of measured transmission between 425 nm to 675 nm is plotted against the purple dye ratio, with separate plots for each yellow dye ratio. The total amount of blue dye is held constant. The optimum ratio of the three dyes is determined to be 10 Blue: 10 Yellow: 2 Purple, and has a standard deviation of 2.1%. (b) The transmission spectrum of the optimized dye is shown, with the gray areas showing the wavelengths excluded from the standard deviation. The bottom right inset shows the gray dye mixture in CHCl3, and the top right shows a polarizer made from the same ratio and viewed through an analyzer.

Fig. 4
Fig. 4

(a) Extinction ratio (dashed) and polarizance (solid) on the left and right axis respectively are shown as a function of wavelength. The dye was mixed at a ratio of 5 Blue: 5 Yellow: 1 Purple. Three different concentrations of total dye weight in CHCl3 are shown; 50, 25, and 10 mg/mL. The vertical dotted line at 633 nm shows the wavelength at which the polarizer was imaged. The horizontal dotted lines indicate the maximum visibility in (b). (b) Visibility data for features ranges from 5 to 31 μm, and the maximum visibility is shown by the solid line for each dye concentration. (c) Magnified images of the 50 mg/mL polarizer with a 633 nm HeNe source polarized horizontally (top) and vertically (bottom).

Fig. 5
Fig. 5

A diagram of a patterned circular polarizer is shown. Two stages of LPP/LCP material are used with a buffer of Norland Optical Adhesive in between. The first stage is a quarter-wave plate patterned at 0° and 90°. The second stage is the linear polarizer uniformly aligned at 45° to the first stage.

Fig. 6
Fig. 6

(a) Extinction ratio (dashed) and polarizance (solid) are shown on the left and right axis respectively. The linear polarizer layer was made with blue dye at a concentration of 25 mg/mL CHCl3. The polarizer was measured as both a circular and linear polarizer to compare the quality of the circular to linear polarization conversion done by the quart-wave layer. The vertical dotted line at 633 nm shows the wavelength at which the polarizer was imaged. The horizontal dotted lines indicate the max visibility in (b). (b) The visibility of features is shown down to resolution of 3 μm. The black line corresponds to the maximum possible visibility of 0.74 at 633 nm.

Tables (1)

Tables Icon

Table 1 Dichroic dyes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = I 1 I 2 I 1 + I 2
E R = I 1 I 2
V = I max I min I max + I min

Metrics