Abstract

The development of innovative terahertz (THz) imaging systems has recently moved in the focus of scientific efforts due to the ability to screen substances through textiles or plastics. The invention of THz imaging systems with high spatial resolution is of increasing interest for applications in the realms of quality control, spectroscopy in dusty environment and security inspections. To realize compact THz imaging systems with high spatial resolution it is necessary to develop lenses of minimized thickness that still allow one to focus THz radiation to small spot diameters with low optical aberrations. In addition, it would be desirable if the lenses offered adaptive control of their optical properties to optimize the performance of the imaging systems in the context of different applications. Here we present the design, fabrication and the measurement of the optical properties of spectrally broadband metamaterial-based gradient index (GRIN) lenses that allow one to focus THz radiation to a spot diameter of approximately one wavelength. Due to the subwavelength thickness and the high focusing strength the presented GRIN lenses are an important step towards compact THz imaging systems with high spatial resolution. Furthermore, the results open the path to a new class of adaptive THz optics by extension of the concept to tunable metamaterials.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
    [CrossRef] [PubMed]
  2. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [CrossRef] [PubMed]
  3. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
    [CrossRef]
  4. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
    [CrossRef] [PubMed]
  5. A. N. Lagarkov, V. N. Kisel, and A. K. Sarychev, “Loss and gain in metamaterials,” J. Opt. Soc. Am. B 27, 648–659 (2010).
    [CrossRef]
  6. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
    [CrossRef]
  7. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
    [CrossRef]
  8. J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
    [CrossRef]
  9. J. Kästel, and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71, 011804 (2005).
    [CrossRef]
  10. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [CrossRef]
  11. Rayspan Corporation, Website (2010). Available online at http://www.rayspan.com/index.htm.
  12. H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, and K. Kawase, “Noninvasive mail inspection system with terahertz radiation,” Appl. Spectrosc. 63, 81–86 (2009).
    [CrossRef] [PubMed]
  13. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
    [CrossRef]
  14. M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
    [CrossRef]
  15. P. F. Taday, ““Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Trans. R. Soc. London, Ser. A 362, 351–364 (2004).
    [CrossRef]
  16. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  17. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  18. T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
    [CrossRef]
  19. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
    [CrossRef]
  20. C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).
  21. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
    [CrossRef]
  22. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [CrossRef] [PubMed]
  23. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
    [CrossRef]
  24. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
    [CrossRef]
  25. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, and R. Beigang, “andM. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
    [CrossRef] [PubMed]
  26. N. I. Landy, S. Sajuyigbe, J. J. Mock, and D. R. Smith, “andW. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  27. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, and R. D. Averitt, “andW. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [CrossRef] [PubMed]
  28. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009).
    [CrossRef]
  29. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
    [CrossRef]
  30. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
    [CrossRef]
  31. R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009).
    [CrossRef] [PubMed]
  32. O. Paul, B. Reinhard, B. Krolla, and R. Beigang, “andM. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96, 241110 (2010).
    [CrossRef]
  33. Y. H. Lo, and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
    [CrossRef] [PubMed]
  34. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
    [CrossRef] [PubMed]
  35. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
    [CrossRef] [PubMed]
  36. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
    [CrossRef]
  37. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, and L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass filters,” Opt. Lett. 14, 931–933 (1989).
    [CrossRef] [PubMed]
  38. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008).
    [CrossRef] [PubMed]
  39. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004).
    [CrossRef]
  40. J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
    [CrossRef] [PubMed]

2010 (6)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

O. Paul, B. Reinhard, B. Krolla, and R. Beigang, “andM. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

A. N. Lagarkov, V. N. Kisel, and A. K. Sarychev, “Loss and gain in metamaterials,” J. Opt. Soc. Am. B 27, 648–659 (2010).
[CrossRef]

2009 (9)

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, and R. Beigang, “andM. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
[CrossRef] [PubMed]

H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, and K. Kawase, “Noninvasive mail inspection system with terahertz radiation,” Appl. Spectrosc. 63, 81–86 (2009).
[CrossRef] [PubMed]

J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
[CrossRef] [PubMed]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009).
[CrossRef]

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009).
[CrossRef] [PubMed]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

2008 (9)

N. I. Landy, S. Sajuyigbe, J. J. Mock, and D. R. Smith, “andW. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, and R. D. Averitt, “andW. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

Y. H. Lo, and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (2)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

2005 (2)

J. Kästel, and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71, 011804 (2005).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
[CrossRef]

2004 (3)

N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004).
[CrossRef]

P. F. Taday, ““Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Trans. R. Soc. London, Ser. A 362, 351–364 (2004).
[CrossRef]

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

2003 (1)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

2002 (1)

M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
[CrossRef]

1996 (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

1989 (1)

Adam, A. J. L.

am Weg, C.

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Anders, S.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, and R. D. Averitt, “andW. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Bank, S. R.

Beigang, R.

Bingham, C. M.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, and R. D. Averitt, “andW. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Cheng, Q.

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Chin, J. Y.

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Clarke, E.

J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
[CrossRef]

Cluff, J. A.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

Cole, B. E.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

Cui, T. J.

Dawes, D. H.

Dolling, G.

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

Ewert, U.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Fitzgerald, A. J.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

J. Kästel, and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71, 011804 (2005).
[CrossRef]

Forchel, A.

Fukasawa, R.

M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
[CrossRef]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Gossard, A. C.

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Hangyo, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Hayashi, A.

Heinrich, J.

Henneberger, R.

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Herrmann, M.

M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
[CrossRef]

Höfling, S.

Hoshina, H.

Ikeda, T.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Imhof, C.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Jokerst, N. M.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

J. Kästel, and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71, 011804 (2005).
[CrossRef]

Kawase, K.

Kemp, M. C.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

Khare, S.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Kim, D. S.

Kisel, V. N.

Knab, J. R.

Koch, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

Koide, K.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

Kreysa, E.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Krolla, B.

O. Paul, B. Reinhard, B. Krolla, and R. Beigang, “andM. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

Krug, P. A.

Lagarkov, A. N.

Lägel, B.

Landy, N. I.

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

Leonhardt, R.

Linden, S.

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Liu, R.

Lo, Y. H.

Loeffler, T.

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Lu, H.

Macfarlane, J. C.

Matsushita, A.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

May, T.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

McPhedran, R. C.

Meyer, H.-G.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Minami, Y.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Miyamaru, F.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Mock, J. J.

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, and D. R. Smith, “andW. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
[CrossRef]

Moneke, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

Murray, R.

J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
[CrossRef]

Nagel, M.

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Otani, C.

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Palit, S.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Paul, O.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Phillips, C.

J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
[CrossRef]

Planken, P. C. M.

Plumridge, J.

J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
[CrossRef]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Rahm, M.

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009).
[CrossRef]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Reinhard, B.

O. Paul, B. Reinhard, B. Krolla, and R. Beigang, “andM. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008).
[CrossRef] [PubMed]

Richter, H.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

Roskos, H.

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Rutz, F.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, and D. R. Smith, “andW. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sakai, K.

M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
[CrossRef]

Sarychev, A. K.

Sasaki, Y.

Schurig, D.

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
[CrossRef]

Seo, M. A.

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Shaner, E.

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Smith, D. R.

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, and D. R. Smith, “andW. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
[CrossRef]

Soukoulis, C. M.

Starkloff, M.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Starr, A. F.

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
[CrossRef]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Taday, P. F.

P. F. Taday, ““Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Trans. R. Soc. London, Ser. A 362, 351–364 (2004).
[CrossRef]

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

Tani, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
[CrossRef]

Tao, H.

Tatsuno, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

Thorwirth, G.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Tribe, W. R.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

Trugman, S. A.

Tyler, T.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

van der Valk, N. C. J.

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

von Spiegel, W.

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
[CrossRef] [PubMed]

Weis, P.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Wenckebach, T.

Whitbourn, L. B.

Wolff, S.

Wright, W.

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Yamaguchi, M.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Yamamoto, K.

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Zakosarenko, V.

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Zengerle, R.

Zhang, X.

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Lett. 32, 1620–1622 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Zimmermann, R.

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

O. Paul, B. Reinhard, B. Krolla, and R. Beigang, “andM. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547–556 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247–1250 (2002).
[CrossRef]

J. Opt. (1)

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, L414–L417 (2004).
[CrossRef]

Millim. Terahertz Waves (1)

C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared,” Millim. Terahertz Waves 30, 1281–1296 (2009).

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Nat. Photonics (4)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, and D. B. Shrekenhamer, “andW. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Nature (2)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[CrossRef] [PubMed]

Opt. Express (9)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
[CrossRef] [PubMed]

R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009).
[CrossRef] [PubMed]

Y. H. Lo, and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, and R. Beigang, “andM. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, and R. D. Averitt, “andW. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef] [PubMed]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009).
[CrossRef]

J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
[CrossRef] [PubMed]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7648 (2008).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16, 6736–6744 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Philos. Trans. R. Soc. London, Ser. A (1)

P. F. Taday, ““Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Trans. R. Soc. London, Ser. A 362, 351–364 (2004).
[CrossRef]

Phys. Rev. A (1)

J. Kästel, and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71, 011804 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036609 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, and D. R. Smith, “andW. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[CrossRef]

T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, and E. Kreysa, “A superconducting terahertz imager,” Proc. SPIE 6549, 65490D (2007).
[CrossRef]

Science (1)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

J. Plumridge, E. Clarke, R. Murray, and C. Phillips, “Ultra-strong coupling effects with quantum metamaterials,” Solid State Commun. 146, 406–408 (2008).
[CrossRef]

Other (1)

Rayspan Corporation, Website (2010). Available online at http://www.rayspan.com/index.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Structural design of the unit cell. The underlying geometry was based on annular slots in a copper plane. (b) Refractive index and transmission of a three-layer metamaterial. The refractive index was changed by varying the inner radius of the annular slot between r = 18 and 23 μm. This resulted in a total change of the refractive index from 0.08 to 1.65 at a frequency of 1.3 THz. (c) Microscope picture of the 3-layer GRIN lens. The aperture diameter of the lens is 1.5 mm. (d) Refractive index in dependence of the radial distance from the center of the GRIN lens.

Fig. 2
Fig. 2

Schematic of the experimental setup for the beam profile measurement and the determination of the focus position of the GRIN lens. The THz electric field behind the lens is detected by exploiting the electro-optic effect in gallium phosphide (GaP). The optical probe beam is scanned over the THz beam to determine the spatial field distribution with a spatial resolution of 60 μm that is prescribed by the spot size of the optical beam. PM1,2: parabolic mirrors, L1: lens for the optical beam, M1,2: dielectric mirrors for the optical beam, λ/4: quarter-wave plate

Fig. 3
Fig. 3

(a) 1D intensity profile of the THz beam for different z-positions in propagation direction of the THz wave for the 1-layer GRIN lens. The THz fields were evaluated at a frequency of 1.3 THz. The intensity profiles were obtained by extracting the intensity values along the 1D cross section line of the 2D transversal x-y-intensity profiles along the y-direction as shown in the inset. The z-position was measured relative to the focal plane. (b) Same as (a) for a 3-layer GRIN lens. (c) THz beam diameter D as defined by the full width at half maximum (FWHM) of the intensity profile of the beam normalized to the wavelength λ in dependence of the z-position in propagation direction of the THz wave for the 1-layer GRIN lens. For comparison, the theoretical data as obtained from 3D full wave simulations are plotted as solid lines. The assumed error for D is the standard deviation of the width parameter of the gaussian function that was fitted to the experimental data. (d) Same as (c) for a 3-layer GRIN lens.

Fig. 4
Fig. 4

(a) Experimental and numerical values of D/λ as defined by the ratio between the diameter D of the THz beam and the center wavelength λ of the THz radiation for the 1-layer GRIN lens. At frequencies higher than 1.5 THz the lens no longer operated in the effective medium regime and the optical behavior was governed by scattering. Operation at frequencies higher than 1.5 THz is therefore not recommended. (b) Same as (a) for the 3-layer lens. As envisioned by the design, the GRIN lens focused incident THz radiation to a focus diameter of approximately one wavelength. Over a frequency band between 1.2 and 1.5 THz the ratio D/λ was close to unity.

Metrics