Abstract

A novel concept for reflective displays that uses two-dimensional photonic crystals with subwavelength gratings is introduced. A solar-powered reflective display with photonic crystal color filters was analyzed by a theoretical approach. We fabricated the photonic crystal color filters on a glass substrate by using low-cost nanoimprint lithography and multi-scan excimer laser annealing to produce RGB color filters through a single patterning process. The theoretical and experimental results show that the color filters have high reflectance and angular tolerance, which was qualitatively confirmed by chromaticity coordination analysis.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  3. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19(12), 919–921 (1994).
    [CrossRef] [PubMed]
  4. S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14(3), 629–639 (1997).
    [CrossRef]
  5. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
    [CrossRef]
  6. B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
    [CrossRef]
  7. E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
    [CrossRef] [PubMed]
  8. J. Chapa, “Samsung releases solar powered phone,” http://inhabitat.com/2009/02/13/samsung-releases-solar-powered-phone .
  9. K. Nakamura, H. Nakamura, and N. Kimura, “Development of high reflective TFT,” Sharp Tech. J. 69, 33–37 (1997).
  10. E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998).
  11. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [CrossRef]
  12. J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63(14), 1969–1971 (1993).
    [CrossRef]

2009 (2)

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

2008 (1)

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

2006 (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

1997 (2)

K. Nakamura, H. Nakamura, and N. Kimura, “Development of high reflective TFT,” Sharp Tech. J. 69, 33–37 (1997).

S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14(3), 629–639 (1997).
[CrossRef]

1994 (1)

1993 (2)

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63(14), 1969–1971 (1993).
[CrossRef]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Cheong, B.-H.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

Cho, E.-H.

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Cho, Y.-S.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Choi, H.-Y.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

Erdogan, T.

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Im, J. S.

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63(14), 1969–1971 (1993).
[CrossRef]

Jiang, B.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Jiang, P.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Kim, H. J.

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63(14), 1969–1971 (1993).
[CrossRef]

Kim, H.-S.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

Kimura, N.

K. Nakamura, H. Nakamura, and N. Kimura, “Development of high reflective TFT,” Sharp Tech. J. 69, 33–37 (1997).

Ma, D.-J.

Magnusson, R.

Morris, G. M.

Nakamura, H.

K. Nakamura, H. Nakamura, and N. Kimura, “Development of high reflective TFT,” Sharp Tech. J. 69, 33–37 (1997).

Nakamura, K.

K. Nakamura, H. Nakamura, and N. Kimura, “Development of high reflective TFT,” Sharp Tech. J. 69, 33–37 (1997).

Norton, S. M.

Park, N.-C.

Park, Y.-P.

Prudnikov, O.

Prudnikov, O. N.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

Shin, S. T.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Sohn, J.-S.

Sun, C.-H.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Thompson, M. O.

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63(14), 1969–1971 (1993).
[CrossRef]

Wang, S. S.

Xianyua, W.

Yu, J.

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

B.-H. Cheong, O. N. Prudnikov, E.-H. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63(14), 1969–1971 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (1)

Sharp Tech. J. (1)

K. Nakamura, H. Nakamura, and N. Kimura, “Development of high reflective TFT,” Sharp Tech. J. 69, 33–37 (1997).

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, USA, 1998).

J. Chapa, “Samsung releases solar powered phone,” http://inhabitat.com/2009/02/13/samsung-releases-solar-powered-phone .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) A conventional reflective display [9] and (b) the proposed reflective display with the PhC color filter.

Fig. 2
Fig. 2

(a) The geometry for the proposed color filter. The theoretical results for the reflectance and transmittance for the (b) red, (c) green, and (d) blue filters.

Fig. 3
Fig. 3

The electric field distribution in the vicinity of the PhC color filer at (a) the resonant wavelength (535 nm) and (b) the non-resonant wavelength (650 nm).

Fig. 4
Fig. 4

Simulated optical performances for the PhC color filters: (a) red, (b) green, and (c) blue. (d) The CIE chromaticity diagram.

Fig. 5
Fig. 5

The fabrication process for the 2D PhC color filter on a light energy conversion device.

Fig. 6
Fig. 6

The fabricated Si master results. (a) Optical microscope image for the PhC color filter array. FE-SEM images of the 2D pillar pattern for the (b) red color filter, (c) green color filter, and (d) blue color filter.

Fig. 7
Fig. 7

The fabricated PhC color filter results via the NIL and ICP-RIE process. (a) An optical microscope image of the PhC color filter array before ELA. FE-SEM images of the 2D pillar pattern for (b) the red color filter; (c) the green color filter, and (d) the blue color filter.

Fig. 8
Fig. 8

(a) The reflectance results for the green color filter and its TEM results with various ELA conditions: (b) 2-scan ELA irradiation with a laser energy of 85 mJ cm−2; (c) 2-scan ELA irradiation with a laser energy of 87 mJ cm−2; and (d) 3-scan ELA irradiation with a laser energy of 95 mJ cm−2.

Fig. 9
Fig. 9

(a) The reflectance results for the red color filter. The TEM results with various ELA conditions: (b) 2-scan ELA irradiation with a laser energy of 87 mJ cm−2 and (c) 3-scan ELA irradiation with a laser energy of 95 mJ cm−2.

Fig. 10
Fig. 10

(a) The reflectance results for the PhC color filters. The TEM results for (b) the red color filter and (c) the blue color filter by using 2-scan ELA irradiation with a laser energy of 130 mJ cm−2.

Fig. 11
Fig. 11

The CIE chromaticity diagram for the fabricated PhC color filter with varying incident angles.

Metrics