Abstract

Monolithic integration of Al2O3:Er3+ amplifier technology with passive silicon-on-insulator waveguides is demonstrated. A signal enhancement of >7 dB at 1533 nm wavelength is obtained. The straightforward wafer-scale fabrication process, which includes reactive co-sputtering and subsequent reactive ion etching, allows for parallel integration of multiple amplifier and laser sections with silicon or other photonic circuits on a chip.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  3. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
    [CrossRef]
  4. G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003).
    [CrossRef]
  5. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization-independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007).
    [CrossRef]
  6. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007).
    [CrossRef]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  8. G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
    [CrossRef]
  9. A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
    [CrossRef]
  10. G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
    [CrossRef]
  11. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [CrossRef]
  12. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005).
    [CrossRef] [PubMed]
  13. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
    [CrossRef]
  14. J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
    [CrossRef] [PubMed]
  15. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000).
    [CrossRef]
  16. L. H. Spiekman, “Semiconductor optical amplifiers,” in Optical Fiber Telecommunications Volume IVA, I. P. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 699–731.
  17. S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
    [CrossRef]
  18. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [CrossRef] [PubMed]
  19. Frankfurt Laser Company, http://www.frlaserco.com/
  20. J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
    [CrossRef]
  21. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
    [CrossRef]
  22. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [CrossRef]
  23. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
    [CrossRef]
  24. J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
    [CrossRef]
  25. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [CrossRef]
  26. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
    [CrossRef] [PubMed]
  27. ePIXfab, the silicon photonic platform. http://www.epixfab.eu/
  28. X. Phoeni, http://www.phoenixbv.com/
  29. O. V. Ivanova, R. Stoffer, L. Kauppinen, and M. Hammer, “Variational effective index method for 3D vectorial scattering problems in photonics: TE polarization,” in Progress In Electromagnetics Research Symposium, (The Electromagnetics Academy, Moscow, 2009), pp. 1038–1042.
  30. M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235(4–6), 285–303 (2004).
    [CrossRef]
  31. OlympIOs Integrated Optics Software, http://www.c2v.nl/software/
  32. L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.
  33. S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, Washington, DC 2009), paper CTuC6. http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-2009-CTuC6

2010

2009

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[CrossRef] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

2008

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

2007

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[CrossRef]

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization-independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007).
[CrossRef]

2005

2004

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235(4–6), 285–303 (2004).
[CrossRef]

D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
[CrossRef]

2003

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[CrossRef]

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003).
[CrossRef]

2000

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

1999

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

1996

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Agazzi, L.

Assanto, G.

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

Ay, F.

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[CrossRef] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[CrossRef]

Baets, R.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Bakker, A.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

Barrios, C. A.

Bastard, L.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[CrossRef]

Beckx, S.

Bernhardi, E. H.

Bienstman, P.

Blaize, S.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[CrossRef]

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

Bona, G. L.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003).
[CrossRef]

Borreman, A.

Bowers, J. E.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[CrossRef] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[CrossRef] [PubMed]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[CrossRef]

Bramerie, L.

Broquin, J. E.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[CrossRef]

Brouckaert, J.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Cassagnètes, C.

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[CrossRef]

Cohen, O.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Colace, L.

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

Costa e Silva, M.

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

de Ridder, R. M.

Di Cioccio, L.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Driessen, A.

Dumon, P.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Fang, A. W.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Fedeli, J. M.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Fischer, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Forchel, A.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Gay, M.

Germann, R.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003).
[CrossRef]

Geskus, D.

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

Geuzebroek, D. H.

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Hammer, M.

M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235(4–6), 285–303 (2004).
[CrossRef]

Heideman, R. G.

Hollinger, G.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Huber, G.

L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.

Jones, R.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Kahn, A.

L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.

Kamp, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Kazmierczak, A.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Khan, M. R. H.

Kimerling, L. C.

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

Koeth, J.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Kuo, Y. H.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Lagehe-Blanchard, C.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Lambeck, P. V.

Legge, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Leinse, A.

Letartre, X.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Liang, D.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Lipson, M.

Luan, H. C.

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

Luyssaert, B.

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Martinelli, M.

Masini, G.

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

Melloni, A.

Morichetti, F.

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

Offrein, B. J.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003).
[CrossRef]

Paniccia, M. J.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Park, H.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Pollnau, M.

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[CrossRef] [PubMed]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[CrossRef] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[CrossRef] [PubMed]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[CrossRef]

L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.

Polman, A.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Raday, O.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Regreny, P.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Roelkens, G.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

Roeloffzen, C. G. H.

Rojo Romeo, P.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Scheife, H.

L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Seassal, C.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Seufert, J.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Simon, J. C.

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Spiekman, L. H.

Stoffer, R.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[CrossRef] [PubMed]

Sysak, M. N.

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

Taillaert, D.

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

Van Campenhout, J.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Van Thourhout, D.

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

van Uffelen, K. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van Wolferen, H. A. G. M.

Wada, K.

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

Werner, R.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Wiaux, V.

Wörhoff, K.

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[CrossRef]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[CrossRef] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[CrossRef] [PubMed]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[CrossRef] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[CrossRef]

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization-independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007).
[CrossRef]

L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

Zimmerman, D. R.

Appl. Phys. B

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[CrossRef]

Appl. Phys. Lett.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Electron. Lett.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008).
[CrossRef]

G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

IBM J. Res. Develop.

G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010).
[CrossRef]

S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Mater. Today

A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007).
[CrossRef]

G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Commun.

M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235(4–6), 285–303 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Spectrochem. Acta Part A

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004).
[CrossRef]

Other

ePIXfab, the silicon photonic platform. http://www.epixfab.eu/

X. Phoeni, http://www.phoenixbv.com/

O. V. Ivanova, R. Stoffer, L. Kauppinen, and M. Hammer, “Variational effective index method for 3D vectorial scattering problems in photonics: TE polarization,” in Progress In Electromagnetics Research Symposium, (The Electromagnetics Academy, Moscow, 2009), pp. 1038–1042.

Frankfurt Laser Company, http://www.frlaserco.com/

L. H. Spiekman, “Semiconductor optical amplifiers,” in Optical Fiber Telecommunications Volume IVA, I. P. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 699–731.

OlympIOs Integrated Optics Software, http://www.c2v.nl/software/

L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.

S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, Washington, DC 2009), paper CTuC6. http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-2009-CTuC6

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a SOI on-chip optical circuit including monolithically integrated Al2O3:Er3+ waveguide amplifiers and lasers (red sections)

Fig. 2
Fig. 2

Schematic of the designed geometries of the SOI and Al2O3:Er3+ waveguides as well as the adiabatically inverted taper structure for efficient light coupling

Fig. 3
Fig. 3

Process flow for integration of Al2O3:Er3+and Si waveguides (top view and cross-sectional view). (a) SOI waveguide; (b) deposition of the Al2O3:Er3+ layer; (c) structuring of the Al2O3:Er3+ layer

Fig. 4
Fig. 4

(a) Scanning electron microscope (SEM) picture of an inversely tapered Si waveguide end before deposition of Al2O3:Er3+; (b and c) SEM cross-sectional pictures of the tapered Si waveguide with decreasing horizontal size, covered by the Al2O3:Er3+ overlay

Fig. 5
Fig. 5

Signal enhancement in a 13.5-mm-long Al2O3:Er3+-Si-Al2O3:Er3+ structure as a function of launched pump power (a) for three different C-band wavelengths and (b) for varying signal input power at the peak wavelength of 1533 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = 10 log 10 [ I p / I u ] ,
S ( λ ) = [ γ ( λ ) + α Total ( λ ) ] L ,

Metrics