Abstract

A multi-wavelength laser is demonstrated using a dye-doped cholesteric polymer film whose reflection bandwidth is broadened with several oscillations. Due to the abrupt change of the density of state between oscillation peak and valley, each oscillation functions as a photonic band gap for generating a laser wavelength under the excitation of a pumping laser. As a result, a multiple wavelength laser is generated. Results indicate that the dye-doped cholesteric liquid crystal polymer film is a good candidate for fabricating broadband lasers such as white light lasers. Potential applications include experimental testing of laser materials, identification markers, information displays, and inertial confinement laser fusion.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. F. Roelens, J. A. Bolger, D. Williams, and B. J. Eggleton, “Multi-wavelength synchronous pulse burst generation with a wavelength selective switch,” Opt. Express 16(14), 10152–10157 (2008).
    [CrossRef] [PubMed]
  2. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [CrossRef] [PubMed]
  3. X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
    [CrossRef] [PubMed]
  4. P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993).
    [CrossRef]
  5. Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010).
    [CrossRef]
  6. Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
    [CrossRef] [PubMed]
  7. D. Pudo, M. Depa, and L. R. Chen, “Single and Multiwavelength All-Optical Clock Recovery in Single-Mode Fiber Using the Temporal Talbot Effect,” J. Lightwave Technol. 25(10), 2898–2903 (2007).
    [CrossRef]
  8. M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
    [CrossRef]
  9. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
    [CrossRef]
  10. E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, “A high SNR, 150 ch supercontinuum CW optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Optical Fiber Communication Conf., 2001, ME2–1.
  11. H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
    [CrossRef]
  12. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
    [CrossRef]
  13. N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
    [CrossRef]
  14. N. Park and P. F. Wysocki, “24-Line multiwavelength operation of Erbium-Doped fiber-Ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
    [CrossRef]
  15. B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1022-Channel WDM transmitter,” in Eur. Conf. Optical Communication, 1999, Post deadline Paper PD1–3.
  16. W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
    [CrossRef] [PubMed]
  17. Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
    [CrossRef]
  18. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
    [CrossRef]
  19. H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
    [CrossRef] [PubMed]
  20. P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett. 33(5), 515–517 (2008).
    [CrossRef] [PubMed]
  21. C.-R. Lee, S.-H. Lin, H.-C. Yeh, and T.-D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
    [CrossRef]
  22. S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18(9), 9496–9503 (2010).
    [CrossRef] [PubMed]
  23. C. T. Wang and T. H. Lin, “Multi-wavelength laser emission in dye-doped photonic liquid crystals,” Opt. Express 16(22), 18334–18339 (2008).
    [CrossRef] [PubMed]
  24. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
    [CrossRef]
  25. Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
    [CrossRef]
  26. Y. Zhou, Y. H. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

C.-R. Lee, S.-H. Lin, H.-C. Yeh, and T.-D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[CrossRef]

Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

2006 (3)

2005 (1)

2003 (2)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

2002 (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
[CrossRef]

2000 (1)

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

1998 (1)

H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
[CrossRef]

1996 (1)

N. Park and P. F. Wysocki, “24-Line multiwavelength operation of Erbium-Doped fiber-Ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

1995 (1)

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

1993 (2)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993).
[CrossRef]

1992 (1)

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

1988 (1)

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Alphonse, G.

H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
[CrossRef]

Avramopoulos, H.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Bass, M.

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Bickers, L.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Bolger, J. A.

Brandes, S.

Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
[CrossRef] [PubMed]

Bull, J. D.

Chen, L. R.

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

Coles, H. J.

Connolly, J.

H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
[CrossRef]

Dawson, J. W.

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

Delfyett, P.

H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
[CrossRef]

Depa, M.

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

Eggleton, B. J.

Ellis, A. D.

Faulkner, D. W.

P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993).
[CrossRef]

Feng, X.

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
[CrossRef]

Fritz, W.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Garcia Gunning, F. C.

Garcia-Rubio, L. H.

Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010).
[CrossRef]

Hands, P. J. W.

Healy, T.

Hill, G. R.

P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993).
[CrossRef]

Hong, Q.

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[CrossRef]

Hornung, S.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Houbavlis, T.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Huang, S.-Y.

Huang, Y. H.

Y. Zhou, Y. H. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Huffman, D. E.

Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010).
[CrossRef]

Hunwicks, A. R.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Ji, T.-D.

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
[CrossRef]

Kokot, S.

Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
[CrossRef] [PubMed]

Lai, Y.

Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
[CrossRef] [PubMed]

Lee, C.-R.

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

Li, J. H.

Li, L.

Lin, S.-H.

Lin, T. H.

Liu, J.-H.

Lu, Z.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Methley, S. G.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Mo, T.-S.

Morris, S. M.

Ni, Y.

Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
[CrossRef] [PubMed]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Park, N.

N. Park and P. F. Wysocki, “24-Line multiwavelength operation of Erbium-Doped fiber-Ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

Pudo, D.

Rapaport, A.

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Reeve, M. H.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Roelens, M. A. F.

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
[CrossRef]

Serebrennikova, Y. M.

Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010).
[CrossRef]

Shi, H.

H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
[CrossRef]

Shyu, C.-Y.

Smith, J. M.

Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010).
[CrossRef]

Smith, P. J.

P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993).
[CrossRef]

St. John, W.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
[CrossRef]

Tam, H. Y.

Tang, B. Y.

Vahala, K. J.

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

Vlachos, K.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Wai, P. K. A.

Wang, C. T.

Wilkinson, T. D.

Williams, D.

Wu, S. T.

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Y. Zhou, Y. H. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[CrossRef]

Wu, T. X.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[CrossRef]

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-Line multiwavelength operation of Erbium-Doped fiber-Ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

Yang, D.-K.

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Yang, P.-C.

Yeh, H.-C.

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Yu, H. P.

Zhao, W.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

Zhou, Y.

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Y. Zhou, Y. H. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Zoiros, K.

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002).
[CrossRef]

Anal. Chim. Acta (1)

Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Electron. Lett. (2)

H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998).
[CrossRef]

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000).
[CrossRef]

N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992).
[CrossRef]

N. Park and P. F. Wysocki, “24-Line multiwavelength operation of Erbium-Doped fiber-Ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Liq. Cryst. (1)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[CrossRef]

Opt. Commun. (1)

Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006).
[CrossRef]

Opt. Express (8)

H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
[CrossRef] [PubMed]

M. A. F. Roelens, J. A. Bolger, D. Williams, and B. J. Eggleton, “Multi-wavelength synchronous pulse burst generation with a wavelength selective switch,” Opt. Express 16(14), 10152–10157 (2008).
[CrossRef] [PubMed]

T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
[CrossRef] [PubMed]

X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. H. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

C.-R. Lee, S.-H. Lin, H.-C. Yeh, and T.-D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009).
[CrossRef]

S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18(9), 9496–9503 (2010).
[CrossRef] [PubMed]

C. T. Wang and T. H. Lin, “Multi-wavelength laser emission in dye-doped photonic liquid crystals,” Opt. Express 16(22), 18334–18339 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993).
[CrossRef]

Proc. SPIE (1)

Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010).
[CrossRef]

Other (2)

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, “A high SNR, 150 ch supercontinuum CW optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Optical Fiber Communication Conf., 2001, ME2–1.

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1022-Channel WDM transmitter,” in Eur. Conf. Optical Communication, 1999, Post deadline Paper PD1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for characterizing the laser performances. BS: beam splitter; A: aperture; P: polarizer; QW: quarter wave plate; L: lens; CF: color filter.

Fig. 2
Fig. 2

Fluorescence (black) and laser (red) emission spectra from (a) sample-1, and (b) sample-2.

Fig. 3
Fig. 3

Measured reflection spectra of (a) sample-1, and (b) sample-2.

Fig. 4
Fig. 4

Photographs of (a) sample-1, and (b) sample-2.

Fig. 5
Fig. 5

(a) Lasing beam image and (b) beam profile.

Fig. 6
Fig. 6

Laser emission as a function of the pump energy.

Metrics