Abstract

A difference-frequency generation based spectrometer system for simultaneous ultra-sensitive measurements of formaldehyde (CH2O) and Methane (CH4) is presented. A new multiplexing approach using collinear quasi-phase-matching in a single grating period of periodically poled lithium niobate (PPLN) is discussed and demonstrated for two pairs of pump and signal lasers to generate mid-infrared frequencies at 2831.64 cm−1 and 2916.32 cm−1, respectively. The corresponding absorption signals are discriminated by modulating the DFB diode lasers at modulation frequencies of 40 kHz and 50 kHz, respectively, and using a computer based modulation and de-modulation scheme. In addition, simultaneous measurements of CH2O, CH4 and H2O are demonstrated utilizing both collinear and non-collinear quasi-phase-matching.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fried and D. Richter, Infrared Absorption Spectroscopy, in Analytical Techniques for Atmospheric Measurement, Dwayne Heard, Editor (Blackwell Publishing, May, 2006).
  2. R. W. Boyd, Nonlinear Optics, (Third Edition, Academic Press, 2008).
  3. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [CrossRef]
  4. D. Richter, D. G. Lancaster, and F. K. Tittel, “Development of an automated diode-laser-based multicomponent gas sensor,” Appl. Opt. 39(24), 4444–4450 (2000).
    [CrossRef]
  5. Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
    [CrossRef] [PubMed]
  6. L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
    [CrossRef]
  7. Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
    [CrossRef]
  8. J. J. Scherer, J. B. Paul, and H.-J. Jost, “Quantitative trace gas sensing with mid-infrared difference frequency generation lasers,” Proceedings FLAIR 2009, 52 (2009).
  9. P. Malara, P. Maddaloni, G. Mincuzzi, S. De Nicola, and P. De Natale, “Non-collinear quasi phase matching and annular profiles in difference frequency generation with focused Gaussian beams,” Opt. Express 16(11), 8056–8066 (2008).
    [CrossRef] [PubMed]
  10. D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B , doi: , (2005).
  11. P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
    [CrossRef]
  12. P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15(21), 13476–13495 (2007).
    [CrossRef] [PubMed]
  13. D. Richter, US Patent application 11276874, “Precision Polarization Optimized Optical Beam Processor,” filed March 17, 2006 with US Patent and Trademark Office.
  14. C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
    [CrossRef]
  15. B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
    [CrossRef]
  16. B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
    [CrossRef]
  17. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys., B Photophys. Laser Chem. 57(2), 131–139 (1993).
    [CrossRef]

2009

J. J. Scherer, J. B. Paul, and H.-J. Jost, “Quantitative trace gas sensing with mid-infrared difference frequency generation lasers,” Proceedings FLAIR 2009, 52 (2009).

2008

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

P. Malara, P. Maddaloni, G. Mincuzzi, S. De Nicola, and P. De Natale, “Non-collinear quasi phase matching and annular profiles in difference frequency generation with focused Gaussian beams,” Opt. Express 16(11), 8056–8066 (2008).
[CrossRef] [PubMed]

2007

2006

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
[CrossRef]

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

2003

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

2002

B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
[CrossRef]

2000

1997

1993

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys., B Photophys. Laser Chem. 57(2), 131–139 (1993).
[CrossRef]

Cao, Z.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Cao, Z. S.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Cartier, S.

B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
[CrossRef]

Chen, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Chen, W. D.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

De Natale, P.

De Nicola, S.

Deng, L.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Deng, L. H.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Dyroff, C.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
[CrossRef]

Fried, A.

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15(21), 13476–13495 (2007).
[CrossRef] [PubMed]

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
[CrossRef]

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
[CrossRef]

Gao, X.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Gao, X. M.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Gong, Z.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Gong, Z. B.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Han, L.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Henry, B.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
[CrossRef]

Jost, H.-J.

J. J. Scherer, J. B. Paul, and H.-J. Jost, “Quantitative trace gas sensing with mid-infrared difference frequency generation lasers,” Proceedings FLAIR 2009, 52 (2009).

Jundt, D. H.

Lancaster, D. G.

Liang, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Maddaloni, P.

Malara, P.

Mincuzzi, G.

Mucke, R.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys., B Photophys. Laser Chem. 57(2), 131–139 (1993).
[CrossRef]

Paul, J. B.

J. J. Scherer, J. B. Paul, and H.-J. Jost, “Quantitative trace gas sensing with mid-infrared difference frequency generation lasers,” Proceedings FLAIR 2009, 52 (2009).

Rauenbuehler, S.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

Richter, D.

Roller, C.

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

Scherer, J. J.

J. J. Scherer, J. B. Paul, and H.-J. Jost, “Quantitative trace gas sensing with mid-infrared difference frequency generation lasers,” Proceedings FLAIR 2009, 52 (2009).

Slemr, F.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys., B Photophys. Laser Chem. 57(2), 131–139 (1993).
[CrossRef]

Tittel, F. K.

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

D. Richter, D. G. Lancaster, and F. K. Tittel, “Development of an automated diode-laser-based multicomponent gas sensor,” Appl. Opt. 39(24), 4444–4450 (2000).
[CrossRef]

Walega, J.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

Walega, J. G.

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15(21), 13476–13495 (2007).
[CrossRef] [PubMed]

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
[CrossRef]

Wang, H.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Weibring, P.

P. Weibring, D. Richter, J. G. Walega, and A. Fried, “First demonstration of a high performance difference frequency spectrometer on airborne platforms,” Opt. Express 15(21), 13476–13495 (2007).
[CrossRef] [PubMed]

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
[CrossRef]

Werle, P.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys., B Photophys. Laser Chem. 57(2), 131–139 (1993).
[CrossRef]

Wert, B. P.

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
[CrossRef]

Xu, C.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Yuan, Y. Q.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Zhang, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Zhang, Z. Gong, and X. Gao, “Ultrabroadband tunable continuous-wave difference-frequency generation in periodically poled lithium niobate waveguides,” Opt. Lett. 32(13), 1953–1955 (2007).
[CrossRef] [PubMed]

Zhang, W. J.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B 85(2-3), 207–218 (2006).
[CrossRef]

C. Roller, A. Fried, J. G. Walega, P. Weibring, and F. K. Tittel, “Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for High Performance Airborne Tunable Diode Laser Measurements of formaldehyde,” Appl. Phys. B 82(2), 247–264 (2006), doi:.
[CrossRef]

Appl. Phys., B Photophys. Laser Chem.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys., B Photophys. Laser Chem. 57(2), 131–139 (1993).
[CrossRef]

J. Geophys. Res.

B. P. Wert, A. Fried, B. Henry, and S. Cartier, “Evaluation of inlets used for the airborne measurement of formaldehyde,” J. Geophys. Res. 107(D13), 4163 (2002), doi:.
[CrossRef]

B. P. Wert, A. Fried, S. Rauenbuehler, J. Walega, and B. Henry, “Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements,” J. Geophys. Res. 108(D12), 4350 (2003).
[CrossRef]

Opt. Commun.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281(6), 1686–1692 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proceedings FLAIR

J. J. Scherer, J. B. Paul, and H.-J. Jost, “Quantitative trace gas sensing with mid-infrared difference frequency generation lasers,” Proceedings FLAIR 2009, 52 (2009).

Other

D. Richter, US Patent application 11276874, “Precision Polarization Optimized Optical Beam Processor,” filed March 17, 2006 with US Patent and Trademark Office.

A. Fried and D. Richter, Infrared Absorption Spectroscopy, in Analytical Techniques for Atmospheric Measurement, Dwayne Heard, Editor (Blackwell Publishing, May, 2006).

R. W. Boyd, Nonlinear Optics, (Third Edition, Academic Press, 2008).

D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B , doi: , (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Collinear quasi-phase-matching (CQPM) in a PPLN crystal (Λ = 30.1 μm, T = 37.0 C), The idler frequency is shown on the x-axis and the corresponding pump and signal wavelengths are determined by drawing a vertical line until it intersects the signal trace (right axis, green) and the pump trace (left axis, blue) and the wavelengths are read on the corresponding y-axes, see text for details.

Fig. 2
Fig. 2

Collinear quasi-phase-matching (CQPM) in a PPLN crystal (Λ = 30.1 μm, T = 37.0 C) showing possible frequency combinations above the 1/e idler power level threshold (Δk = 1.3 cm−1). The idler frequency is shown on the x-axis and the corresponding pump and signal wavelengths are determined by drawing a vertical line until it intersects the signal trace (right axis, green) and the pump trace (left axis, blue) and the wavelengths are read on the corresponding y-axes, see text for details. The grey areas indicate the idler tuning range for fixed pump wavelengths 1082.97 and 1070.96 nm while tuning the signal DFB lasers around 1557.44 and 1561.96 nm. See text for details.

Fig. 3
Fig. 3

Theoretical and measured idler power for the PPLN crystal (L = 50 mm, d = 1 mm, φmax = 1.14°, T = 37.0 °C and Λ = 30.1 μm). Points A, B are generated by mixing 1561.96 nm and 1557.44 nm with a 1082.97 nm and 1070.96 nm, respectively. The measured trace is recorded by mixing an ECDL laser tuned from 1557 nm to 1564 nm with a 1082.97 nm and a 1070.96 nm laser, respectively. Note that point C is generated by mixing 1561.96 nm with 1070.96 nm, which is further discussed in Sect. 2. Note that the y-scale is in arbitrary units and that the traces are normalized to each other.

Fig. 4
Fig. 4

Non-collinear quasi-phase-matching (NCQPM) in a PPLN crystal (Λ = 30.1 μm, T = 37.0 °C), above the 1/e idler power level threshold (Δk = 1.8 cm−1, darker shading) and above the 1/30 idler power level threshold (Δk = 5.8 cm−1, lighter shading). The idler frequency is shown on the x-axis and the corresponding pump and signal wavelengths are visualized by drawing a vertical line until it intersects the signal trace (right axis, green) and the pump trace (left axis, blue) and the wavelengths are read on the corresponding y-axes, see text for details. The gray areas indicate the idler tuning range for fixed pump wavelengths 1082.97 and 1070.96 nm while tuning the signal DFB lasers around 1557.44 and 1561.96 nm. See text for details.

Fig. 5
Fig. 5

Second harmonic signals of CH4, CH2O and H2O using frequencies generated by simultaneous collinear and non-collinear quasi-phase-matching (CQPM and NCQPM) in the same grating period of a PPLN crystal (L = 50 mm, T = 37.0 °C and Λ = 30.1 μm). For the current focusing condition [11], CH2O and CH4 are collinearly phase matched by mixing 1082.97/1561.96 nm and 1070.96/1557.46 nm, respectively. H2O is non-collinearly phase matched by mixing 1070.96/1561.96 nm. The geometric conditions allow the same signal laser, 1561.96 nm, to be mixed with both the 1082.97 nm and 1070.96 nm pump lasers, generating simultaneous wavelength sweeps at ~2831.64 cm−1 and ~2935.3 cm−1, allowing both CH2O and H2O to be measured on the same wavelength scan. The solid and dashed lines demonstrate the effect of turning the1070.96 nm pump laser on and off, respectively.

Fig. 6
Fig. 6

Optical layout of the mid-IR spectrometer. To the left, the laser module consisting of two Ytterbium doped Distributed Feed Back (DFB) fiber lasers (Pump 1 and Pump 2), two Ytterbium (Yb) fiber amplifiers, a 1558 nm and 1562 nm (DFB-DL) laser, Polarization controllers and Wavelength division multiplexers (WDM). To the right, the detection module consisting of a Multi-pass cell and a combined detection unit and difference frequency generation stage consisting of Ball lens, Focusing Lens, Periodically Poled Lithium Niobate (PPLN), Collimation lens, Germanium filter (Ge), Detector focusing lenses, Sample detector, Noise detector, Reference Gas Cell, Reference Detector and Multi Pass Cell.

Fig. 7
Fig. 7

Allan variance results for CH2O (blue trace, 2831.64 cm−1) and for CH4 (green trace, 2916.32 cm−1) during laboratory conditions.

Fig. 8
Fig. 8

The time evolution of the CH2O and the CH4 (2916.32 cm−1) concentration over 4 hours showing the system sensitivity to cross talk and long term calibration performance during laboratory conditions. The “*” indicates which gas is added to the inlet during an event and the numbers beneath are the instrument response. Events 1 and 2 are instrument calibrations. Events 3, 5 and 6 are crosstalk/accuracy tests, carried out by adding a known gas concentration to the inlet and measuring the instrument response. Event 4 is an ambient measurement of laboratory air and the ~1.5 h duration between events 3 and 4 is the instrument response when zero air was added to the inlet.

Tables (1)

Tables Icon

Table 1 Estimated system performance limits of detection (LOD)a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k ¯ i = k ¯ p k ¯ s
Δ k ¯ = k ¯ p k ¯ s k ¯ i 2 π Λ ¯
I i ( λ , T ) K i s i n c 2 ( Δ k L 2 )
I i ( λ , T ) K d / L d / L e ( w p k i φ ) 2 4 s i n c 2 ( Δ k e f f L 2 φ 2 ) d φ
Δ k e f f = Δ k + k i 2 ( 1 k i k s ) φ 2

Metrics