Abstract

We develop an integrated system of holographic optical trapping and multimodal nonlinear microscopy and perform simultaneous three-dimensional optical manipulation and non-invasive structural imaging of composite soft-matter systems. We combine different nonlinear microscopy techniques such as coherent anti-Stokes Raman scattering, multi-photon excitation fluorescence and multi-harmonic generation, and use them for visualization of long-range molecular order in soft materials by means of their polarized excitation and detection. The combined system enables us to accomplish manipulation in composite soft materials such as colloidal inclusions in liquid crystals as well as imaging of each separate constituents of the composite material in different nonlinear optical modalities. We also demonstrate optical generation and control of topological defects and simultaneous reconstruction of their three-dimensional long-range molecular orientational patterns from the nonlinear optical images.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1993).
  2. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [CrossRef] [PubMed]
  3. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
    [CrossRef] [PubMed]
  4. I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
    [CrossRef] [PubMed]
  5. I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
    [CrossRef] [PubMed]
  6. J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
    [CrossRef] [PubMed]
  7. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
    [CrossRef] [PubMed]
  8. T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
    [CrossRef]
  9. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
    [CrossRef]
  10. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
    [CrossRef] [PubMed]
  11. M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
    [CrossRef] [PubMed]
  12. I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
    [CrossRef] [PubMed]
  13. C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
    [CrossRef] [PubMed]
  14. M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
    [CrossRef] [PubMed]
  15. I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
    [CrossRef] [PubMed]
  16. D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).
  17. R. P. Trivedi, D. Engstrom, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. (to be published).
  18. Y. Iwashita and H. Tanaka, “Optical manipulation of defects in a lyotropic lamellar phase,” Phys. Rev. Lett. 90(4), 045501 (2003).
    [CrossRef] [PubMed]
  19. I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
    [CrossRef]
  20. I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
    [CrossRef] [PubMed]
  21. I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
    [CrossRef]
  22. S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
    [CrossRef]
  23. N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006).
    [CrossRef] [PubMed]
  24. E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).
  25. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
    [CrossRef] [PubMed]
  26. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
    [CrossRef]
  27. I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
    [CrossRef]
  28. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
    [CrossRef]
  29. I. I. Smalyukh and O. D. Lavrentovich, “Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 051703 (2002).
    [CrossRef]
  30. I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
    [CrossRef]
  31. S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
    [CrossRef]
  32. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
    [CrossRef]
  33. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
    [CrossRef] [PubMed]
  34. B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007).
    [CrossRef] [PubMed]
  35. B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009).
    [CrossRef]
  36. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005).
    [CrossRef]
  37. R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
    [CrossRef] [PubMed]
  38. D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935 (2003).
    [CrossRef]
  39. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [CrossRef] [PubMed]
  40. The full description of the procedures used in this paper requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by NIST or are recommended by NIST or that they are necessarily the best materials, instruments, or suppliers for the purposes described.
  41. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
    [CrossRef]
  42. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
    [CrossRef]
  43. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
    [CrossRef]
  44. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [CrossRef]
  45. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [CrossRef] [PubMed]
  46. The notation such as BPF 417/60 denotes a bandpass filter with center wavelength of 417 nm and 60 nm bandwidth.
  47. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
    [PubMed]
  48. K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
    [CrossRef]
  49. P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
    [CrossRef]
  50. K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
    [CrossRef]
  51. I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
    [CrossRef] [PubMed]
  52. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [CrossRef] [PubMed]
  53. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298 (2004).
    [CrossRef]
  54. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  55. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [CrossRef] [PubMed]
  56. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [CrossRef]
  57. M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
    [CrossRef] [PubMed]
  58. G. K. Voeltz and W. A. Prinz, “Sheets, ribbons and tubules - how organelles get their shape,” Nat. Rev. Mol. Cell Biol. 8(3), 258–264 (2007).
    [CrossRef] [PubMed]
  59. Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006).
    [CrossRef] [PubMed]
  60. X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
    [CrossRef] [PubMed]
  61. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
    [CrossRef] [PubMed]
  62. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
    [CrossRef] [PubMed]
  63. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [CrossRef] [PubMed]
  64. R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
    [CrossRef]

2010 (5)

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
[CrossRef]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

2009 (5)

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
[CrossRef]

B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009).
[CrossRef]

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

2008 (4)

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
[CrossRef] [PubMed]

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

2007 (8)

G. K. Voeltz and W. A. Prinz, “Sheets, ribbons and tubules - how organelles get their shape,” Nat. Rev. Mol. Cell Biol. 8(3), 258–264 (2007).
[CrossRef] [PubMed]

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
[CrossRef] [PubMed]

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
[CrossRef] [PubMed]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

2006 (10)

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006).
[CrossRef] [PubMed]

R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
[CrossRef] [PubMed]

Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

2005 (5)

I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005).
[CrossRef]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

2004 (6)

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[CrossRef] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[CrossRef] [PubMed]

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298 (2004).
[CrossRef]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2003 (4)

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Y. Iwashita and H. Tanaka, “Optical manipulation of defects in a lyotropic lamellar phase,” Phys. Rev. Lett. 90(4), 045501 (2003).
[CrossRef] [PubMed]

D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935 (2003).
[CrossRef]

2002 (3)

I. I. Smalyukh and O. D. Lavrentovich, “Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 051703 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

2001 (3)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[CrossRef]

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

1999 (1)

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

1998 (1)

T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
[CrossRef]

1997 (2)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[CrossRef]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[CrossRef] [PubMed]

Abbott, N. L.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Agate, B.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Anand, S.

S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
[CrossRef]

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005).
[CrossRef]

Babic, D.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Balcinuas, T.

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

Beaurepaire, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Bertness, K. A.

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

Blanchard, P. T.

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

Bodnar, V. H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

Bourgine, P.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Brake, J. M.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Brakenhoff, G. J.

Brasselet, E.

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

Brown, C. T. A.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Buhman, K. K.

Butler, J.

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

Butler, J. C.

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

Camacho-Lopez, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[CrossRef] [PubMed]

Carrasco, S.

Chen, B.-C.

B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009).
[CrossRef]

Chen, H.

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Cheng, J.-X.

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
[CrossRef] [PubMed]

Cicerone, M. T.

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Clark, N. A.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
[CrossRef]

Conkey, D. B.

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
[PubMed]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Currier, N.

T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
[CrossRef]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Daschner, M. K.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Débarre, D.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Dickinson, M.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Duloquin, L.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Duschl, C.

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

Engstrom, D.

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

R. P. Trivedi, D. Engstrom, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. (to be published).

Faure, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Finkelmann, H.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[CrossRef] [PubMed]

Fischer, T. M.

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

Fu, Y.

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
[CrossRef] [PubMed]

Ganikhanov, F.

Garces-Chavez, V.

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

Gartland, E. C.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

Gleeson, H. F.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Goksor, M.

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[CrossRef]

Gunn-Moore, F.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

Haber, L. H.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298 (2004).
[CrossRef]

Harvey, T. E.

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005).
[CrossRef]

Herrington, C. S.

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

Higgins, D. A.

D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935 (2003).
[CrossRef]

Huang, H.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

Iwashita, Y.

Y. Iwashita and H. Tanaka, “Optical manipulation of defects in a lyotropic lamellar phase,” Phys. Rev. Lett. 90(4), 045501 (2003).
[CrossRef] [PubMed]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Jess, P. R. T.

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

Johnson, J. C.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Jung, Y.

Juodkazis, S.

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006).
[CrossRef] [PubMed]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

Kano, H.

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298 (2004).
[CrossRef]

Kaputa, D. S.

Katz, M.

Kee, T. W.

Kopf, D.

Kosa, T.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

Lansac, Y.

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
[CrossRef]

Lapointe, C. P.

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

Lautz, C.

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

Lavrentovich, O. D.

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh and O. D. Lavrentovich, “Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 051703 (2002).
[CrossRef]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Lee, L. F.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Lee, T.

Li, P.

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Liley, M.

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

Lim, S.-H.

B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009).
[CrossRef]

Little, H.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Liu, Z.

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Lubensky, T. C.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
[CrossRef]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[CrossRef] [PubMed]

Luengo-Oroz, M. A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Luk, Y. Y.

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

Luther, B. J.

D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935 (2003).
[CrossRef]

Madhusudana, N. V.

I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
[CrossRef] [PubMed]

Mansfield, L. M.

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

Mason, T. G.

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

McGloin, D.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Misawa, H.

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006).
[CrossRef] [PubMed]

Müller, M.

Murazawa, N.

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006).
[CrossRef] [PubMed]

Musevic, I.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Nazarenko, V.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Nych, A.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Ognysta, U.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Oh-E, M.

Olivier, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Osterman, N.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Palffy-Muhoray, P.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[CrossRef] [PubMed]

Park, H.-S.

Parsek, M. R.

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

Paterson, L.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Pavani, S. R. P.

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
[PubMed]

Persson, M.

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

Petty, D.

T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
[CrossRef]

Peyriéras, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Piestun, R.

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
[PubMed]

Pillai, R. S.

Poberaj, I.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Poulin, P.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[CrossRef] [PubMed]

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

Pratibha, R.

I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
[CrossRef] [PubMed]

Prinz, W. A.

G. K. Voeltz and W. A. Prinz, “Sheets, ribbons and tubules - how organelles get their shape,” Nat. Rev. Mol. Cell Biol. 8(3), 258–264 (2007).
[CrossRef] [PubMed]

Ramos, L.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

Rapoport, T. A.

Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006).
[CrossRef] [PubMed]

Ravnik, M.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Riches, A. C.

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

Robins, L. H.

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

Roshko, A.

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

Saar, B. G.

Sanford, N. A.

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

Santos, A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Savy, T.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Saykally, R. J.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Schaller, R. D.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Schlager, J. B.

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

Seitz, W.

Senyuk, B. I.

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

Shelley, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[CrossRef] [PubMed]

Shi, K.

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Shi, R.

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
[CrossRef] [PubMed]

Shi, Y.

Shibata, Y.

Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006).
[CrossRef] [PubMed]

Shiyanovskii, S. V.

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Shrout, J. D.

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

Sibbett, W.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Škarabot, M.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Slipchenko, M. N.

Smalyukh, I. I.

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
[CrossRef]

S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
[CrossRef]

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
[CrossRef] [PubMed]

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh and O. D. Lavrentovich, “Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 051703 (2002).
[CrossRef]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

R. P. Trivedi, D. Engstrom, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. (to be published).

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
[PubMed]

Solinas, X.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Stark, H.

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[CrossRef]

T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
[CrossRef]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[CrossRef] [PubMed]

Stevenson, D. J.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

Stockdale, G.

S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
[CrossRef]

Sunney Xie, X.

Taheri, B.

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

Tanaka, H.

Y. Iwashita and H. Tanaka, “Optical manipulation of defects in a lyotropic lamellar phase,” Phys. Rev. Lett. 90(4), 045501 (2003).
[CrossRef] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

Trivedi, R. P.

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
[CrossRef]

S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
[CrossRef]

R. P. Trivedi, D. Engstrom, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. (to be published).

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
[PubMed]

Veilleux, I.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Voeltz, G. K.

G. K. Voeltz and W. A. Prinz, “Sheets, ribbons and tubules - how organelles get their shape,” Nat. Rev. Mol. Cell Biol. 8(3), 258–264 (2007).
[CrossRef] [PubMed]

Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006).
[CrossRef] [PubMed]

Wang, H.

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
[CrossRef] [PubMed]

Weitz, D. A.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[CrossRef] [PubMed]

Wilson, K. R.

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Wong, G. C. L.

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

Wood, T. A.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Wurlitzer, S.

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

Xie, X. S.

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Yada, M.

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[CrossRef] [PubMed]

Yamamoto, J.

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[CrossRef] [PubMed]

Yang, W. Y.

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

Yokoyama, H.

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005).
[CrossRef]

Yu, J.

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

Zapotocky, M.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

Zhu, J.

Zribi, O. V.

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

Zumer, S.

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[CrossRef]

B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009).
[CrossRef]

K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298 (2004).
[CrossRef]

Biophys. J. (1)

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007).
[CrossRef] [PubMed]

Cell (1)

Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Curr. Opin. Colloid Interface Sci. (1)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997).
[CrossRef]

Eur Phys J E Soft Matter (1)

I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008).
[CrossRef]

J. Biomed. Opt. (1)

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935 (2003).
[CrossRef]

J. Cryst. Growth (1)

K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008).
[CrossRef]

J. Opt. (1)

R. P. Trivedi, D. Engstrom, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. (to be published).

J. Phys. Chem. B (3)

S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001).
[CrossRef]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006).
[CrossRef]

E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).

N. J. Phys. (1)

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004).
[CrossRef]

Nat. Mater. (3)

I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010).
[CrossRef]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Nat. Rev. Mol. Cell Biol. (1)

G. K. Voeltz and W. A. Prinz, “Sheets, ribbons and tubules - how organelles get their shape,” Nat. Rev. Mol. Cell Biol. 8(3), 258–264 (2007).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Opt. Express (7)

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted.
[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[CrossRef] [PubMed]

I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008).
[CrossRef] [PubMed]

B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007).
[CrossRef] [PubMed]

R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
[CrossRef] [PubMed]

N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Philos. Transact. A Math. Phys. Eng. Sci. (1)

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Phys. Rep. (1)

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

I. I. Smalyukh and O. D. Lavrentovich, “Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 051703 (2002).
[CrossRef]

I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005).
[CrossRef]

M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006).
[CrossRef] [PubMed]

I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Iwashita and H. Tanaka, “Optical manipulation of defects in a lyotropic lamellar phase,” Phys. Rev. Lett. 90(4), 045501 (2003).
[CrossRef] [PubMed]

I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006).
[CrossRef] [PubMed]

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[CrossRef] [PubMed]

I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009).
[CrossRef]

Science (6)

C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009).
[CrossRef] [PubMed]

J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003).
[CrossRef] [PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[CrossRef] [PubMed]

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Other (4)

The notation such as BPF 417/60 denotes a bandpass filter with center wavelength of 417 nm and 60 nm bandwidth.

D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).

P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1993).

The full description of the procedures used in this paper requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by NIST or are recommended by NIST or that they are necessarily the best materials, instruments, or suppliers for the purposes described.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the integrated MNOPM and HOT optical setup which is built around an inverted microscope. The components of MNOPM: HWP: half wave-plate, GLP: Glan-laser polarizer, PCF: photonic crystal fiber, AL: aspheric lens, BS: beam-splitter, BC: beam combiner, FM: folding mirror, PMT: photo-multiplier tube, DM: dichroic mirror, OL: objective lens. The components of the HOT: SLM: spatial light modulator, L1, L2, L3, L4: plano-convex lenses, DM-IR: dichroic mirror for the IR trapping laser.

Fig. 2
Fig. 2

Manipulation and imaging of spherical microparticles in a cholesteric LC. Images show vertical cross-sections of planar cholesteric LC cells obtained in 3PEF (a-c) and CARS (d-f) modes, displaying the cholesteric lamellae having spherical microparticles embedded within them. Particles of 4 μm diameter are optically trapped and moved within as well as across the cholesteric layers. The nonlinear signals are collected in the forward direction with a BPF 417/60 for 3PEF and a BPF 661/20 for CARS of CN stretching vibration of 5CB. (g) shows the excitation and the fluorescence spectra of 3PEF for 5CB. (h) shows the broadband Stokes, the pump/probe at 780 nm and the broadband CARS spectrum obtained from the LC with different peaks in the CARS spectra marked to indicate the corresponding Raman vibration. The molecular structure of 5CB is shown in the inset.

Fig. 3
Fig. 3

3D Imaging of GaN nanorods dispersed in a cholesteric LC. GaN nanorods are manipulated in the layered structure of the cholesteric LC and the LC-nanorod composite is imaged in its lateral plane as well as in the vertical cross-section in two nonlinear modes: the LC is probed using 3PEF (a, b) and CARS (d, e) and the nanorods are visualized in SHG. (c) shows the spectrum with the excitation at 870 nm and the 3PEF emission from the LC molecules and SHG (at 435 nm) from the GaN nanorods. The nanorods interacting with a cholesteric dislocation are imaged in 3PEF (f-h). (g) shows 3PEF image of a dislocation comprising λ+1/2 and λ-1/2 disclinations in its vertical cross-section. The schematic diagram of the molecular director pattern around the dislocation with the position of the nanorod embedded in it is shown in (i).

Fig. 4
Fig. 4

3D imaging of optically generated defect structures in a homeotropic unwound cholesteric LC sample. Loops of cholesteric finger CF-1 are optically generated with the HOT setup and are imaged in their lateral and vertical cross-sectional planes, in 3PEF (a,d) and CARS (c,e) imaging modes. The schematic representation of the twist of n(r) within the structure is shown in its vertical cross section (b). The red dots and lines represent the loop of nonsingular disclinations λ+1/2 while the blue dots and lines correspond to λ-1/2 disclination loops. The structure is axially symmetric around the axis marked by the green double arrow.

Tables (1)

Tables Icon

Table 1 Comparison of different orientation-sensitive 3D microscopy techniques

Metrics