Abstract

A variable birefringence effect has been observed with 1D PMMA surface gratings on a gold film substrate. By changing the operation wavelength on the Au film, the birefringence value Δneff changes from positive to negative. The result verified that this uniaxial crystal-like plasmonic surface gratings showed good superlensing effect at 515nm when PMMA width:Air width=1:1 where the absolute value of Δneff is relatively large.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Breaking Optical diffraction limitation using Optical Hybrid-Super-Hyperlens with Radially Polarized Light

Bo Han Cheng, Yung-Chiang Lan, and Din Ping Tsai
Opt. Express 21(12) 14898-14906 (2013)

Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging

Yao Ting Wang, Bo Han Cheng, You Zhe Ho, Yung-Chiang Lan, Pi-Gang Luan, and Din Ping Tsai
Opt. Express 20(20) 22953-22960 (2012)

Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting onpolarization-sensitive liquid crystalline polymers

Hiroshi Ono, Masaya Nishi, Tomoyuki Sasaki, Kohei Noda, Makoto Okada, Shinji Matsui, and Nobuhiro Kawatsuki
J. Opt. Soc. Am. B 29(9) 2386-2391 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247 (2006).
    [Crossref] [PubMed]
  3. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  4. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [Crossref] [PubMed]
  5. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
    [Crossref]
  6. Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
    [Crossref]
  7. R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
    [Crossref]
  8. M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714 (1988).
  9. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [Crossref] [PubMed]
  10. L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
    [Crossref]
  11. A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
    [Crossref]
  12. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
    [Crossref]
  13. S. M. Tytov, “Electromagnetic Properties of a Finely Stratified Medium,” Sov. Phys. JETP 2, 466 (1956).
  14. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999), pp. 22–41.
  15. P. Yeh, Optical waves in layered media (Wiley, 1991), pp. 118–138.

2010 (1)

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[Crossref]

2008 (3)

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[Crossref]

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[Crossref]

2004 (1)

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1988 (1)

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714 (1988).

1956 (1)

S. M. Tytov, “Electromagnetic Properties of a Finely Stratified Medium,” Sov. Phys. JETP 2, 466 (1956).

Alekseyev, L. V.

Bertolotti, M.

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Chen, J.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Cheng, C.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

D’yakonov, M. I.

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714 (1988).

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Ding, J.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Fainman, Y.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[Crossref]

Fan, Y. X.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Feng, L.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[Crossref]

Foteinopoulou, S.

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[Crossref]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Haus, J. W.

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Jacob, Z.

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247 (2006).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Li, R.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Liu, Z.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lomakin, V.

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[Crossref]

Mandatori, A.

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

Narimanov, E. E.

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247 (2006).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Ren, F. F.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Scalora, M.

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Sibilia, C.

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tytov, S. M.

S. M. Tytov, “Electromagnetic Properties of a Finely Stratified Medium,” Sov. Phys. JETP 2, 466 (1956).

Wang, H. T.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhukovsky, S.

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

Appl. Phys. Lett. (3)

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[Crossref]

Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: Dyakonov states in metamaterials,” Appl. Phys. Lett. 93(22), 221109 (2008).
[Crossref]

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal,” Appl. Phys. Lett. 92(14), 141115 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

A. Mandatori, C. Sibilia, M. Bertolotti, S. Zhukovsky, J. W. Haus, and M. Scalora, “Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials,” Phys. Rev. B 70(16), 165107 (2004).
[Crossref]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[Crossref]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[Crossref] [PubMed]

Sov. Phys. JETP (2)

S. M. Tytov, “Electromagnetic Properties of a Finely Stratified Medium,” Sov. Phys. JETP 2, 466 (1956).

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714 (1988).

Other (2)

P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999), pp. 22–41.

P. Yeh, Optical waves in layered media (Wiley, 1991), pp. 118–138.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Structure of the sample with Au thickness 50nm and PMMA thickness 150nm. (b) Grating pitch is 500nm. Polarization of the incident light is rotated along x-y plane where z is the direction of light incidence.
Fig. 2
Fig. 2 PMMA width: Air width (a) 1:1 (b) 1:2 (c) 1:3.
Fig. 3
Fig. 3 Optical setup for Poincare sphere measurement. λ/2: half wave-plate, P1: polarizer, Obj: 20X objective, λ/4: quarter wave-plate, P2: analyzer, D: detector.
Fig. 4
Fig. 4 (a) The corresponding polarization states on the Poincare sphere (b) The Poincare paths for λ/8, λ/4, and λ/2 wave plates by rotating them every 15° from 0° to 90°.
Fig. 5
Fig. 5 Poincare sphere plot of PMMA surface gratings on different substrates with different width ratio (a) Au film substrate, 515nm, (b) Au substrate, 633nm(c) ITO substrate, 515nm, (d) ITO substrate, 633nm.
Fig. 6
Fig. 6 The dispersion curves of the 1D PMMA gratings on Au film according to our experimental data. (a) Δneff*ko*d ~-2π/16 at 633nm. (b) Δneff*ko*d ~2π/7 at 515nm.

Tables (2)

Tables Icon

Table 1 The orientations of the analysis components λ/4 and P2 when θ(Εin) = 15°.

Tables Icon

Table 2 Fitting data of ABCD matrix of the sample element.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I 0 + I 90
S 1 = I 0 - I 90
S 2 = I 45 - I 135
S 3 = I R H C - I L H C
E x = E x 0 cos ( ω t k z δ x )
E y = E y 0 cos ( ω t k z δ y )
S 0 = ( E x 0 ) 2 + ( E y 0 ) 2
S 1 = ( E x 0 ) 2 - ( E y 0 ) 2
S 2 = 2 ( E x 0 ) ( E y 0 ) cos ( δ y - δ x )
S 3 = 2 ( E x 0 ) ( E y 0 ) sin ( δ y - δ x )
Input P 1 = [ 1 0 ]
Sample matrix W(θ) = [ cos (θ) sin (θ) - sin (θ) cos (θ) ] [ A B C D ] [ cos (θ) - sin (θ) sin (θ) cos (θ) ]
Analyzer P 2 (ψ) = [ cos (ψ) sin (ψ) - sin (ψ) cos (ψ) ] [ 1 0 0 0 ] [ cos (ψ) - sin (ψ) sin (ψ) cos (ψ) ] = [ cos 2 (ψ) - sin (ψ) cos (ψ) - sin (ψ) cos (ψ) sin 2 (ψ) ]
QWP = [ e jπ/4 o 0 e -jπ/4 ] fast axis on x ^ axis with e j ( ω t k z ) convention
I R H C = [ cos 2 ( 135 ) - sin ( 135 ) cos ( 135 ) - sin ( 135 ) cos ( 135 ) sin 2 ( 135 ) ] [ e j π / 4 o 0 e - j π / 4 ] * W ( - θ ) * [ 1 0 ]

Metrics