Abstract

Inorganic nanowires are under intense research for large scale solar power generation intended to ultimately contribute a substantial fraction to the overall power mix. Their unique feature is to allow different pathways for the light absorption and carrier transport. In this publication we investigate the properties of a nanowire array acting as a photonic device governed by wave-optical phenomena. We solve the Maxwell equations and calculate the light absorption efficiency for the AM1.5d spectrum and give recommendations on the design. Due to concentration of the incident sunlight at a microscopic level the absorptivity of nanowire solar cells can exceed the absorptivity of an equal amount of material used in thin-film devices. We compute the local density of photon states to assess the effect of emission enhancement, which influences the radiative lifetime of excess carriers. This allows us to compute the efficiency limit within the framework of detailed balance. The efficiency is highly sensitive with respect to the diameter and distance of the nanowires. Designs featuring nanowires below a certain diameter will intrinsically feature low short-circuit current that cannot be compensated even by increasing the nanowire density. Optimum efficiency is not achieved in densely packed arrays, in fact spacing the nanowires further apart (simultaneously decreasing the material use) can even improve efficiency in certain scenarios. We observe absorption enhancement reducing the material use. In terms of carrier generation per material use, nanowire devices can outperform thin-film devices by far.

© 2010 OSA

Full Article  |  PDF Article
Related Articles
Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells

J. Kupec and B. Witzigmann
Opt. Express 17(12) 10399-10410 (2009)

A high efficiency dual-junction solar cell implemented as a nanowire array

Shuqing Yu and Bernd Witzigmann
Opt. Express 21(S1) A167-A172 (2013)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mat. Sci. Eng. R. 62, 175–189 (2008).
    [Crossref]
  2. B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
    [Crossref]
  3. T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
    [Crossref] [PubMed]
  4. B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chemical Soc. Rev. 38, 16–24 (2009).
    [Crossref]
  5. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
    [Crossref]
  6. C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
    [Crossref]
  7. Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett. 10, 4651–4656 (2010).
    [Crossref] [PubMed]
  8. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
    [Crossref] [PubMed]
  9. D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
    [Crossref]
  10. J. Jung, Z. Guo, S. Jee, H. Um, K. Park, and J. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
    [Crossref] [PubMed]
  11. N. Lagos, M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct., in press,corrected proof, (2010).
  12. C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
    [Crossref]
  13. Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
    [Crossref]
  14. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [Crossref] [PubMed]
  15. B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
    [Crossref]
  16. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
    [Crossref] [PubMed]
  17. J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17, 10399–10410 (2009).
    [Crossref] [PubMed]
  18. A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).
  19. M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
    [Crossref] [PubMed]
  20. J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).
  21. J. Jianming, The finite element method in electromagnetics (Wiley & Sons, 1993).
  22. F. Römer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008).
    [Crossref]
  23. E. Palik, Handbook of optical constants of solids (Academic press, 1985).
  24. W. Shockley and H. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
    [Crossref]
  25. J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE,  7597, 759704–759704-10 (2010).
    [Crossref]
  26. D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
  27. N. Anttu and H. Xu, “Coupling of Light into Nanowire Arrays and Subsequent Absorption,” J. Nanoscience and Nanotechnology 10, 7183–7187 (2010).
    [Crossref]
  28. H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991).
    [Crossref]
  29. G. Létay and A. Bett, “EtaOpt–a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells,” Spectrum 20, 25 (2001).
  30. G. Létay, Modellierung von III–V Solarzellen (Universität Konstanz, Germany, 2003).
  31. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
    [Crossref]
  32. L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
    [Crossref]
  33. C. Lin and M. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
    [Crossref] [PubMed]
  34. D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
    [Crossref]
  35. D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [Crossref]
  36. K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [Crossref] [PubMed]
  37. W. Spirkl and H. Ries, “Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,” Phys. Rev. B 52, 11319–11325 (1995).
    [Crossref]
  38. G. Araújo and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mat. Sol. Cells 33, 213–240 (1994).
    [Crossref]
  39. O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
    [Crossref]
  40. D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 66608 (2004).
    [Crossref]
  41. G. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions,” Phys. Rev. A 11, 253–264 (1975).
    [Crossref]
  42. E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
    [Crossref]
  43. S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
    [Crossref]
  44. Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
    [Crossref]
  45. P. Würfel, Physics of solar cells (Wiley Online Library, 2005).
    [Crossref]
  46. J. Joannopoulos and J. Winn, Photonic crystals: molding the flow of light (Princeton Univ. Press, 2008).
  47. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
    [Crossref]

2011 (1)

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

2010 (11)

J. Jung, Z. Guo, S. Jee, H. Um, K. Park, and J. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
[Crossref] [PubMed]

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett. 10, 4651–4656 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE,  7597, 759704–759704-10 (2010).
[Crossref]

N. Anttu and H. Xu, “Coupling of Light into Nanowire Arrays and Subsequent Absorption,” J. Nanoscience and Nanotechnology 10, 7183–7187 (2010).
[Crossref]

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

2009 (6)

C. Lin and M. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17, 10399–10410 (2009).
[Crossref] [PubMed]

B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chemical Soc. Rev. 38, 16–24 (2009).
[Crossref]

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[Crossref]

2008 (5)

L. Tsakalakos, “Nanostructures for photovoltaics,” Mat. Sci. Eng. R. 62, 175–189 (2008).
[Crossref]

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

F. Römer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008).
[Crossref]

K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[Crossref] [PubMed]

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

2007 (3)

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
[Crossref]

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref] [PubMed]

2006 (1)

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

2005 (2)

D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

2004 (1)

D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 66608 (2004).
[Crossref]

2001 (1)

G. Létay and A. Bett, “EtaOpt–a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells,” Spectrum 20, 25 (2001).

1999 (1)

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

1996 (1)

S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
[Crossref]

1995 (1)

W. Spirkl and H. Ries, “Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,” Phys. Rev. B 52, 11319–11325 (1995).
[Crossref]

1994 (1)

G. Araújo and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mat. Sol. Cells 33, 213–240 (1994).
[Crossref]

1991 (1)

H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991).
[Crossref]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
[Crossref]

1975 (1)

G. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions,” Phys. Rev. A 11, 253–264 (1975).
[Crossref]

1961 (1)

W. Shockley and H. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

1946 (1)

E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

1933 (1)

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Agarwal, G.

G. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions,” Phys. Rev. A 11, 253–264 (1975).
[Crossref]

Anttu, N.

N. Anttu and H. Xu, “Coupling of Light into Nanowire Arrays and Subsequent Absorption,” J. Nanoscience and Nanotechnology 10, 7183–7187 (2010).
[Crossref]

Araújo, G.

G. Araújo and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mat. Sol. Cells 33, 213–240 (1994).
[Crossref]

Arbenz, P.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
[Crossref]

Atwater, H.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Barber, G.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Barnett, S.

S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
[Crossref]

Bett, A.

G. Létay and A. Bett, “EtaOpt–a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells,” Spectrum 20, 25 (2001).

Betti, T.

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

Boettcher, S.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Borgström, M.

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

Briggs, R.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Brongersma, M.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Brongersma, M. L.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

Cai, W.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Cao, A.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Cao, L.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

Catchpole, K.

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref] [PubMed]

Chinellato, O.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
[Crossref]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

Colombo, C.

C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[Crossref]

Dankovi, T.

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

Deppert, K.

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

Derkacs, D.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Dickey, E.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Djuri, Z.

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

Duché, D.

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Ehrfeld, W.

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

Escoubas, L.

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Fan, P.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Fan, S.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Fang, Y.

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Feng, B.

D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Fina, N.

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

Flory, F.

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Fukui, T.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Fussell, D.

D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 66608 (2004).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

Girlanda, R.

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

Goto, H.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Grätzel, M.

C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[Crossref]

Guo, N.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Guo, Z.

Hara, S.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Heiß, M.

C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[Crossref]

Hiruma, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Hu, J.

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref] [PubMed]

Huang, J.

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Husain, M.

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

Huttner, B.

S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
[Crossref]

i Morral, A.

C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[Crossref]

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

Jaki, Z.

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

Jee, S.

Jia, Y.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Jianming, J.

J. Jianming, The finite element method in electromagnetics (Wiley & Sons, 1993).

Joannopoulos, J.

J. Joannopoulos and J. Winn, Photonic crystals: molding the flow of light (Princeton Univ. Press, 2008).

Jung, J.

Kandala, A.

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

Kayes, B.

B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Kelzenberg, M.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Kempa, T.

B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chemical Soc. Rev. 38, 16–24 (2009).
[Crossref]

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Kendrick, C.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Kim, D.

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

Kumar, D.

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

Kumar, V.

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

Kupec, J.

J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE,  7597, 759704–759704-10 (2010).
[Crossref]

J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17, 10399–10410 (2009).
[Crossref] [PubMed]

Lagos, N.

N. Lagos, M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct., in press,corrected proof, (2010).

Lal, A.

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett. 10, 4651–4656 (2010).
[Crossref] [PubMed]

Lee, J.

Létay, G.

G. Létay and A. Bett, “EtaOpt–a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells,” Spectrum 20, 25 (2001).

G. Létay, Modellierung von III–V Solarzellen (Universität Konstanz, Germany, 2003).

Lewis, N.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Li, Z.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Lieber, C.

B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chemical Soc. Rev. 38, 16–24 (2009).
[Crossref]

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Lim, S.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Lin, C.

Loudon, R.

S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
[Crossref]

Lu, Y.

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett. 10, 4651–4656 (2010).
[Crossref] [PubMed]

Mallouk, T.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Mar, W.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Martí, A.

G. Araújo and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mat. Sol. Cells 33, 213–240 (1994).
[Crossref]

Martijn de Sterke, C.

D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 66608 (2004).
[Crossref]

Matheu, P.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

Matloob, R.

S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
[Crossref]

Mayer, T.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

McPhedran, R.

D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 66608 (2004).
[Crossref]

Motohisa, J.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Niarchos, D.

N. Lagos, M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct., in press,corrected proof, (2010).

Nim, D.

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

Nosaki, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Palik, E.

E. Palik, Handbook of optical constants of solids (Academic press, 1985).

Park, J.-S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

Park, K.

Persson, J.

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

Petykiewicz, J.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Pieruccini, M.

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

Polman, A.

Pound, R.

E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Povinelli, M.

Purcell, E.

E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Putnam, M.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Queisser, H.

W. Shockley and H. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Randjelovi, D.

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

Redwing, J.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Ries, H.

W. Spirkl and H. Ries, “Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,” Phys. Rev. B 52, 11319–11325 (1995).
[Crossref]

H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991).
[Crossref]

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
[Crossref]

Römer, F.

F. Römer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008).
[Crossref]

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
[Crossref]

Samuelson, L.

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

Savasta, S.

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

Schaadt, D.

D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Schmidt, A.

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

Schuller, J.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Schuller, J. A.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

Senfed, M.

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

Shen, H.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Shockley, W.

W. Shockley and H. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Shu, Q.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Sigalas, M.

N. Lagos, M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct., in press,corrected proof, (2010).

Simon, J.

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Singh, P.

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

Smestad, G.

H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991).
[Crossref]

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
[Crossref]

Song, S.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Spirkl, W.

W. Spirkl and H. Ries, “Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,” Phys. Rev. B 52, 11319–11325 (1995).
[Crossref]

Spurgeon, J.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Srivastava, S.

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

Stefano, O.

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

Tian, B.

B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chemical Soc. Rev. 38, 16–24 (2009).
[Crossref]

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Tomioka, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Torchio, P.

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Torrey, H.

E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Tsakalakos, L.

L. Tsakalakos, “Nanostructures for photovoltaics,” Mat. Sci. Eng. R. 62, 175–189 (2008).
[Crossref]

Turner-Evans, D.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Um, H.

Vasudev, A.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Vervisch, W.

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

Wagner, J.

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

Wallentin, J.

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

Wang, K.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Warren, E.

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Wei, J.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

White, J.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

Winn, J.

J. Joannopoulos and J. Winn, Photonic crystals: molding the flow of light (Princeton Univ. Press, 2008).

Winston, R.

H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991).
[Crossref]

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
[Crossref]

Witzigmann, B.

J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE,  7597, 759704–759704-10 (2010).
[Crossref]

J. Kupec and B. Witzigmann, “Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells,” Opt. Express 17, 10399–10410 (2009).
[Crossref] [PubMed]

F. Römer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008).
[Crossref]

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
[Crossref]

Würfel, P.

P. Würfel, Physics of solar cells (Wiley Online Library, 2005).
[Crossref]

Xu, H.

N. Anttu and H. Xu, “Coupling of Light into Nanowire Arrays and Subsequent Absorption,” J. Nanoscience and Nanotechnology 10, 7183–7187 (2010).
[Crossref]

Xu, Y.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

Yoon, H.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Yu, E.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Yu, G.

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Yu, N.

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Yu, S.

J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE,  7597, 759704–759704-10 (2010).
[Crossref]

Yu, Z.

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Yuwen, Y.

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

Zheng, X.

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Zhu, H.

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Appl. Phys. Express (1)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy,” Appl. Phys. Express 2, 5004 (2009).
[Crossref]

Appl. Phys. Lett. (5)

C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[Crossref]

C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010).
[Crossref]

D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[Crossref]

D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Chem. Commun. (1)

Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and et al., “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. 46, 5533–5535 (2010).
[Crossref]

Chemical Soc. Rev. (1)

B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chemical Soc. Rev. 38, 16–24 (2009).
[Crossref]

Infrared Phys. Technol. (1)

Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999).
[Crossref]

J. Appl. Phys. (2)

B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

W. Shockley and H. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

J. Nanoscience and Nanotechnology (1)

N. Anttu and H. Xu, “Coupling of Light into Nanowire Arrays and Subsequent Absorption,” J. Nanoscience and Nanotechnology 10, 7183–7187 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: Atomic, Molecular and Optical Physics (1)

S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B: Atomic, Molecular and Optical Physics 29, 3763 (1996).
[Crossref]

J. Phys.: Condensed Matter (1)

O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys.: Condensed Matter 22, 315302 (2010).
[Crossref]

Mat. Sci. Eng. R. (1)

L. Tsakalakos, “Nanostructures for photovoltaics,” Mat. Sci. Eng. R. 62, 175–189 (2008).
[Crossref]

Nano Lett. (6)

T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and Tandem Axial pin Nanowire Photovoltaic Devices,” Nano Lett. 8, 3456–3460 (2008).
[Crossref] [PubMed]

Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett. 10, 4651–4656 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[Crossref] [PubMed]

J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-Performance Single Nanowire Tunnel Diodes,” Nano Lett. 3, 603–604 (2010).

L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 2, 439–445 (2010).
[Crossref]

Nature (London) (1)

B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature (London) 449, 885 (2007).
[Crossref]

Nature Materials (2)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nature Materials 8, 643–647 (2009).
[Crossref] [PubMed]

M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials 9, 239–244 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Quantum Electron. (1)

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007).
[Crossref]

Phys. Rev. (1)

E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946).
[Crossref]

Phys. Rev. A (1)

G. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions,” Phys. Rev. A 11, 253–264 (1975).
[Crossref]

Phys. Rev. B (1)

W. Spirkl and H. Ries, “Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,” Phys. Rev. B 52, 11319–11325 (1995).
[Crossref]

Phys. Rev. E (1)

D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 66608 (2004).
[Crossref]

Phys. Status Solidi C (1)

A. Kandala, T. Betti, A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).

Proc. SPIE (2)

J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE,  7597, 759704–759704-10 (2010).
[Crossref]

H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991).
[Crossref]

Sol. Energy Mat. Sol. Cells (2)

G. Araújo and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mat. Sol. Cells 33, 213–240 (1994).
[Crossref]

D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mat. Sol. Cells 95, 215–218 (2011).
[Crossref]

Solar Energy Materials (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Solar Energy Materials 21, 99–111 (1990).
[Crossref]

Spectrum (1)

G. Létay and A. Bett, “EtaOpt–a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells,” Spectrum 20, 25 (2001).

Other (6)

G. Létay, Modellierung von III–V Solarzellen (Universität Konstanz, Germany, 2003).

J. Jianming, The finite element method in electromagnetics (Wiley & Sons, 1993).

E. Palik, Handbook of optical constants of solids (Academic press, 1985).

N. Lagos, M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photon. Nanostruct., in press,corrected proof, (2010).

P. Würfel, Physics of solar cells (Wiley Online Library, 2005).
[Crossref]

J. Joannopoulos and J. Winn, Photonic crystals: molding the flow of light (Princeton Univ. Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top: Modal electric field intensities of the two most relevant modes used to compute absorptivity using the 2D modal approach in [17]. Center: Relative incoupling into the modes plotted on the top, for definition, refer to Eq. (8). Bottom: Spectral absorptivity of an InP nanowire array and an equivalent plane perfectly AR-coated thin-film with same material use. The geometric fill factor is constant for all plots, the footprint area of the nanowires covers a fraction of 0.196 of the unit cell area. For thin nanowires up to 180nm diameter, the absorptivity of low energy photons can be improved by increasing the diameter while the absorptivity of high energy photons is high even for small diameters. Green dashed curve illustrates absorptivity of the (a0 = 360nm, d0 = 180nm)-geometry obtained from 2D waveguide modal analysis as discussed in [17].

Fig. 2
Fig. 2

Normalized short-circuit current of InP nanowire solar cells for various diameters at various area fill factors and reference thin-film normalized short-circuit currents (markers on the right). The nanowires are arranged in square array, common height of nanowires in all designs is 2000nm. For constant geometric fill factor the usage of InP is constant. The device constitutes a photonic device, the absorptivity cannot be predicted by effective medium considerations based on geometric aspects alone. Absorption enhancement leads to decreased material use compared to thin-film. Refer to Fig.1 for the plot of a few absorptivity curves serving as the input for the analysis depicted herein.

Fig. 3
Fig. 3

Computational domain for the (a0 = 360nm, d0 = 180nm) geometry for the calculation of the PLDOS. The solutions for the source problem with dipoles located at the axis of the center nanowire array 100nm below the top. The space above the nanowires is not illustrated, the space between the nanowires is made transparent. The color is representing the absolute value of the real part of the electric field, the color bar is omitted due to the qualitative statement of the illustration. The length of the nanowires was shortened by 1000nm to decrease computational effort. The cluster parameter as defined in [40] is NC > 9. A real refractive index of n = 3.5 was assumed.

Fig. 4
Fig. 4

Spectral PLDOS (normalized to the LDOS of free space) for the (a0 = 360nm, d0 = 180nm) geometry for various wavelength at 100nm below the top of the array separated for xy-dipole momentum giving rise to quasi-TE waves within the photonic crystal and z-dipole momentum agitating quasi-TM waves. The enhancement of spontaneous emission with respect to free space is given by the sum of all dipole momentum orientations. We observe an enhancement of approx. 2.5, partially degrading the ameliorating effect of micro-concentration. The length of the nanowires was shortened by 1000nm to decrease computational effort. The cluster parameter as defined in [40] is NC > 9. A real refractive index of n = 3.5 was assumed.

Fig. 5
Fig. 5

Detailed balance efficiency limit of InP nanowire solar cells for various diameters at various area fill factors, thermodynamic limits (dashed lines) and reference thin-film efficiencies (markers on the right). Nanowires (20nm ≤ d0 ≤ 200nm) are arranged in square array, common height of nanowires in all designs is 2000nm. The dashed lines indicating the performance of planar, perfectly absorbing thin-film cells are calculated for concentrations of 1/fNW.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

f NW = d 0 2 π 4 a 0 2 with d 0 a 0 .
× ( μ ¯ ¯ 1 × E ) k 0 2 ɛ ¯ ¯ E = j k 0 Z 0 J
p ( x , λ ) = 1 2 { E ( x , λ ) × H ( x , λ ) * ) }
a ( λ ) = 1 p inc NW p ( x , λ ) d x
I ph = I sc = A SC q e h c 0 0 λ g = c 0 h E g λ a ( λ ) p AM 1.5 d ( λ ) d λ
a ( λ ) = { 0 λ > h c 0 E g 1 λ h c 0 E g
η sc = 0 λ g = c 0 h E g λ a ( λ ) p AM 1.5 d ( λ ) d λ 0 λ g = c 0 h E g λ p AM 1.5 d ( λ ) d λ
c A ( λ ) = t A ( λ ) η A ( λ ) η A ( λ ) + η B ( λ ) and c B ( λ ) = t B ( λ ) η B ( λ ) η A ( λ ) + η B ( λ )
N ( E , x ) = c 4 π ρ ( E , x ) exp ( E Δ μ k B T 0 ) 1 d E d Ω
ρ ( E , x ) dE = 2 π E h 2 c 2 ( Tr ( G E ( x , x , E ) ) ) d E
ρ vac ( E ) d E = 8 π E 2 c 3 h 3 d E .
ρ ( E , x ) d E = β ( E , x ) 8 π E 2 c 3 h 3 d E .
β = ρ ( E , x ) ρ vac ( E , x )
β i ( E , x ) = 2 π k ( e i T G E ( x , x , E ) e i ) with i x , y , z β ( E , x ) = β x ( E , x ) + β y ( E , x ) + β z ( E , x )
i ( v ) = I ph ( v ) I dark ( v ) = I ph ( v ) I 0 ( exp ( q e v k B T ) 1 )
j 0 = 4 π q e h 3 c 0 2 E = 0 E = β ( E ) E 2 exp ( E qV k B T 1 ) d E
j 0 = 4 π q e h 3 c 0 2 β k B T ( 2 k B 2 T 2 + 2 k B T E g + E g 2 ) exp ( E g k B T )
β TF = n t 2 + n b 2 2
β f NW < β TF
v TF ( i ) = k B T q e ln ( I ph i I 0 + 1 )
v NW ( i ) = k B T q e ln ( I ph i g f NW I 0 + 1 ) k B T q e ln ( I ph i g f NW I 0 ) v TF ( i ) k B T q e ln ( g f NW )

Metrics