Abstract

The concentration and pH value of the immobilized glucose oxidase (GOD) are critical parameters in a glucose sensor. In this study, we develop a glucose fiber sensor integrated with heterodyne interferometry to measure the phase difference arising from the chemical reaction between glucose and GOD. Our studies show that the response time and resolution of this sensor will be strongly affected by the pH and concentration properties of GOD. In addition, the results show good linearity between the calibration curve for the glucose solution and serum based sample. The response time of this sensor can be shorter than 3 seconds and best resolutions are 0.1 and 0.136 mg/dl for glucose solution and serum based sample, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Jiang, E. Liu, X. Chen, and J. Huang, “Design and properties study of fiber optics glucose biosensor,” Chin. Opt. Lett. 1, 108–110 (2003).
  2. B. Ganesh and T. K. Radhakrishnan, “Employment of fluorescence quenching for the determination of oxygen and glucose,” Sensors Transducers 60, 439–445 (2005).
  3. Z. Rosenzweig and R. Kopelman, “Analytical properties of miniaturized oxygen and glucose fiber optics sensor,” Sens. Act. B 35-36, 475–483 (1996).
    [CrossRef]
  4. M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
    [CrossRef]
  5. M. H. Chiu, S. F. Wand, and R. S. Chang, “D-type biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233–235 (2005).
    [CrossRef] [PubMed]
  6. H. Wang, J. Huang, Y. Yuan, L. Ding, and D. Fan, “Multifunctional sol-gel sensing membrane for fiber optics glucose sensor,” Proc. SPIE 7673, 767310-1- 767310-7(2010).
  7. P. Yeh, Optical Waves in Layered Media, (John Wiley & Sons, 1991), chaps. 9 and 11.
  8. Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
    [CrossRef]
  9. S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
    [CrossRef]
  10. W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
    [CrossRef] [PubMed]
  11. P. Trinder, “Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor,” Ann. Clin. Biochem. 6, 24–27 (1969).
  12. D. Barham and P. Trinder, “An improved colour reagent for the determination of blood glucose by the oxidase system,” Analyst (Lond.) 97, 142–145 (1972).
    [CrossRef]
  13. C. C. Hsu and D. C. Su, “Method for determining the optic axis and (ne, no) of a birefringent crystal,” Appl. Opt. 41, 3936–3940 (2002).
    [CrossRef] [PubMed]

2009 (2)

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

2008 (1)

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
[CrossRef]

2007 (1)

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

2005 (2)

M. H. Chiu, S. F. Wand, and R. S. Chang, “D-type biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233–235 (2005).
[CrossRef] [PubMed]

B. Ganesh and T. K. Radhakrishnan, “Employment of fluorescence quenching for the determination of oxygen and glucose,” Sensors Transducers 60, 439–445 (2005).

2003 (1)

2002 (1)

1996 (1)

Z. Rosenzweig and R. Kopelman, “Analytical properties of miniaturized oxygen and glucose fiber optics sensor,” Sens. Act. B 35-36, 475–483 (1996).
[CrossRef]

1972 (1)

D. Barham and P. Trinder, “An improved colour reagent for the determination of blood glucose by the oxidase system,” Analyst (Lond.) 97, 142–145 (1972).
[CrossRef]

1969 (1)

P. Trinder, “Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor,” Ann. Clin. Biochem. 6, 24–27 (1969).

Barham, D.

D. Barham and P. Trinder, “An improved colour reagent for the determination of blood glucose by the oxidase system,” Analyst (Lond.) 97, 142–145 (1972).
[CrossRef]

Binu, S.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Chandrasekaran, N.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Chang, R. S.

Chen, J. S.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Chen, X.

Chiu, M. H.

Ganesh, B.

B. Ganesh and T. K. Radhakrishnan, “Employment of fluorescence quenching for the determination of oxygen and glucose,” Sensors Transducers 60, 439–445 (2005).

Ho, W. J.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Hsu, C. C.

Huang, J.

Jiang, D.

Joseph, C. S.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Ker, M. D.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Kopelman, R.

Z. Rosenzweig and R. Kopelman, “Analytical properties of miniaturized oxygen and glucose fiber optics sensor,” Sens. Act. B 35-36, 475–483 (1996).
[CrossRef]

Lepore, M.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Li, Y. K.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Liu, E.

Mahadevan Pillai, V. P.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Manolova, N.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Mita, D. G.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Padhy, B. B.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Portaccio, M.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Pradeepkumar, V.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Radhakrishnan, T. K.

B. Ganesh and T. K. Radhakrishnan, “Employment of fluorescence quenching for the determination of oxygen and glucose,” Sensors Transducers 60, 439–445 (2005).

Rashkov, I.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Rosenzweig, Z.

Z. Rosenzweig and R. Kopelman, “Analytical properties of miniaturized oxygen and glucose fiber optics sensor,” Sens. Act. B 35-36, 475–483 (1996).
[CrossRef]

Stoilova, O.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Su, D. C.

Trinder, P.

D. Barham and P. Trinder, “An improved colour reagent for the determination of blood glucose by the oxidase system,” Analyst (Lond.) 97, 142–145 (1972).
[CrossRef]

P. Trinder, “Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor,” Ann. Clin. Biochem. 6, 24–27 (1969).

Ventura, B. D.

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Wand, S. F.

Wu, C. Y.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Wu, T. K.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Yang, Y. S.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Yeh, Y. L.

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
[CrossRef]

Yuan, C. J.

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

D. Barham and P. Trinder, “An improved colour reagent for the determination of blood glucose by the oxidase system,” Analyst (Lond.) 97, 142–145 (1972).
[CrossRef]

Ann. Clin. Biochem. (1)

P. Trinder, “Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor,” Ann. Clin. Biochem. 6, 24–27 (1969).

Appl. Opt. (1)

Biosens. Bioelectron. (1)

W. J. Ho, J. S. Chen, M. D. Ker, T. K. Wu, C. Y. Wu, Y. S. Yang, Y. K. Li, and C. J. Yuan, “Fabrication of a miniature CMOS-based optical biosensor,” Biosens. Bioelectron. 22, 3008–3013 (2007).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

J. Sol-Gel Sci. Technol. (1)

M. Portaccio, M. Lepore, B. D. Ventura, O. Stoilova, N. Manolova, I. Rashkov, and D. G. Mita, “Fiber-optic glucose biosensor based on glucose oxidase immobilized in a silica gel matrix,” J. Sol-Gel Sci. Technol. 50, 437–448 (2009).
[CrossRef]

Mater. Sci. Eng. C (1)

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Eng. C 29, 183–186 (2009).
[CrossRef]

Opt. Lasers Eng. (1)

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
[CrossRef]

Opt. Lett. (1)

Sens. Act. B (1)

Z. Rosenzweig and R. Kopelman, “Analytical properties of miniaturized oxygen and glucose fiber optics sensor,” Sens. Act. B 35-36, 475–483 (1996).
[CrossRef]

Sensors Transducers (1)

B. Ganesh and T. K. Radhakrishnan, “Employment of fluorescence quenching for the determination of oxygen and glucose,” Sensors Transducers 60, 439–445 (2005).

Other (2)

H. Wang, J. Huang, Y. Yuan, L. Ding, and D. Fan, “Multifunctional sol-gel sensing membrane for fiber optics glucose sensor,” Proc. SPIE 7673, 767310-1- 767310-7(2010).

P. Yeh, Optical Waves in Layered Media, (John Wiley & Sons, 1991), chaps. 9 and 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the measurement system and preliminary test of the glucose fiber sensor; (a) optical configuration of the system; (b) preliminary test with POD method.

Fig. 2
Fig. 2

Theoretical phase variation versus the refractive indices n 2

Fig. 3
Fig. 3

Blank control of the fiber sensor using two glucose solutions, 400 and 10 mg/dl; two serum based samples SRM 965a level 1 and level 4; and one glucose free sample (PBS) for the control experiment.

Fig. 4
Fig. 4

pH dependence of the response time of testing sample; (a) glucose solution with 7 different pH values; (b) serum based sample (SRM 965a) with 4 concentration levels

Fig. 5
Fig. 5

GOD concentration dependence of the response time of the fiber sensor; (a) glucose solution with 100 mg/dl in a glucose concentration with pH 7.5; (b) serum based sample (SRM 965a level 1).

Fig. 6
Fig. 6

The calibration curves of the glucose fiber sensors: (a) glucose solution samples with GOD two pH values, 7.5 and 9 with sensor’s GOD concentration at 10 μg/ml; (b) glucose solution samples with GOD two pH values, 7.5 and 9 with sensor’s GOD at 1 μg/ml; (c) serum based samples (SRM 965a) with two different sensor (GOD concentrations at 10 and 1 μg/ml).

Tables (1)

Tables Icon

Table 1 Resolution of glucose fiber sensor of two types of testing sample

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ t = m φ TIR = m 2 tan 1 ( sin 2 θ t n 2 tan θ t sin θ t ) ,
m = L / 2 h tan θ t ,
I t = I 0 [ 1 + cos ( ω t + φ t ) ] .
Glucose  +  O 2 GOD  gluconic  acid  +  H 2 O 2 .
Δ c = | Δ φ | s .

Metrics