Abstract

In this study, three-dimensional (3D) polyacrylamide microstructures containing gold nanorods (AuNRs) were fabricated by two-photon polymerization (TPP) using Rose Bengal (RB) as the photoinitiator. To retain AuNRs in the 3D polymer microstructures, the laser wavelength was chosen for two-photon RB absorption for improved TPP efficiency, but not for enhancing the longitudinal plasmon resonance of AuNRs which may result in photothermal damage of AuNRs. After TPP processing, the laser wavelength was tuned for the longitudinal plasmon resonance and the laser power was increased to beyond the damage threshold of the AuNRs for reshaping the AuNRs into gold nanospheres. As a result, AuNRs in designated positions of the fabricated 3D microstructures can be achieved. Two-photon luminescence from the doped AuNRs can also act as contrast agent for the visualization of 3D polymer microstructures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
    [CrossRef]
  2. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
    [CrossRef]
  3. P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
    [CrossRef]
  4. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  5. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  6. T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
    [CrossRef]
  7. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
    [CrossRef]
  8. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  9. T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
    [CrossRef]
  10. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
    [CrossRef]
  11. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [CrossRef]
  12. P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
    [CrossRef]
  13. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
    [PubMed]
  14. N. Takeshima, Y. Narita, T. Nagata, S. Tanaka, and K. Hirao, “Fabrication of photonic crystals in ZnS-doped glass,” Opt. Lett. 30(5), 537–539 (2005).
    [CrossRef] [PubMed]
  15. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
    [CrossRef] [PubMed]
  16. Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
    [CrossRef]
  17. W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
    [PubMed]
  18. W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
    [CrossRef]
  19. W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
    [CrossRef]
  20. J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
    [CrossRef] [PubMed]
  21. A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
    [CrossRef] [PubMed]
  22. Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
    [CrossRef] [PubMed]
  23. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
    [CrossRef] [PubMed]
  24. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  25. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
    [CrossRef]
  26. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  27. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  28. N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13(7), 2313–2322 (2001).
    [CrossRef]
  29. J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
    [CrossRef]
  30. Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63(22), 2993–2995 (1993).
    [CrossRef]
  31. L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14(19), 8613–8621 (2006).
    [CrossRef] [PubMed]
  32. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [CrossRef]
  33. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
    [CrossRef]
  34. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
    [CrossRef] [PubMed]
  35. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18(12), 12807–12817 (2010).
    [CrossRef] [PubMed]

2010 (2)

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18(12), 12807–12817 (2010).
[CrossRef] [PubMed]

2009 (5)

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

2008 (3)

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

2007 (2)

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

N. Takeshima, Y. Narita, T. Nagata, S. Tanaka, and K. Hirao, “Fabrication of photonic crystals in ZnS-doped glass,” Opt. Lett. 30(5), 537–539 (2005).
[CrossRef] [PubMed]

J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

2004 (1)

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

2002 (3)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[CrossRef]

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

2001 (5)

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13(7), 2313–2322 (2001).
[CrossRef]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef]

2000 (5)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

1999 (1)

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

1996 (1)

1993 (1)

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63(22), 2993–2995 (1993).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Abid, J. P.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Ai, X. C.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Akiyama, M.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Benichou, E.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Ben-Yakar, A.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Boppart, S. A.

Braun, K.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Brevet, P. F.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

Campagnola, P. J.

L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14(19), 8613–8621 (2006).
[CrossRef] [PubMed]

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Candice, P.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Cao, Y. Y.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

Chang, C. N.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

Chang, C.-Y.

Chang, S.-H.

Chang, Y. T.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

Chen, C. Y.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Chen, S. J.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Chen, S. Y.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Chen, S.-J.

Chen, W. Q.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

Chen, W.-Q.

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

Cheng, W. C.

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Chien, Y. H.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Chiu, K.-C.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Cunningham, L. P.

Delguidice, D. M.

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dong, X. Z.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

Dong, X.-Z.

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

Duan, M.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

Duan, X. M.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

Duan, X.-M.

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

Dunn, B.

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Durr, N. J.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Ekici, O.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

Epling, G. A.

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

Eversole, D. S.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13(7), 2313–2322 (2001).
[CrossRef]

Girault, H. H.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Goodman, S. L.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

Griffin, J.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
[CrossRef] [PubMed]

Guo, T.-F.

Hansen, M. N.

Harrison, R. K.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

Hirao, K.

Hoffacker, K. D.

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

Howell, A. R.

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

Huang, C. C.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13(7), 2313–2322 (2001).
[CrossRef]

Jonin, C.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Juodkazis, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef]

Kalluri, J. R.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Kawakami, T.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Kawata, S.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Kochevar, I. E.

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kuebler, S. M.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Kuo, W. S.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Lambert, C. R.

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lee, M.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

Li, W. M.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Liao, Q.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Lin, C.-Y.

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

Liz-Marzan, L. M.

J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Marcinkevicius, A.

Marder, S. R.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Martini, I. B.

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Matsuo, S.

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef]

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Misawa, H.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef]

Miwa, M.

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef]

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

Mu, C.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Mulvaney, P.

J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13(7), 2313–2322 (2001).
[CrossRef]

Nagata, T.

Nakanishi, S.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

Nappa, J.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Narita, Y.

Naylor, K. M.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Neely, A.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

Nishii, J.

Oldenburg, A. L.

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Pastoriza-Santos, I.

J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Perez-juste, J.

J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Perry, J. W.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Pitts, J. D.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

Ray, P. C.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Redmond, R. W.

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

Revillod, G.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Russier-Antoine, I.

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

Schwartz, B. J.

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Senapati, D.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Singh, A. K.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Stellacci, F.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sun, C. K.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Sun, H. B.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Sun, Z. B.

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

Sun, Z.-B.

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takeshima, N.

Takeyasu, N.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

Tanaka, S.

Tanaka, T.

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Totani, K.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Varisli, B.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Veilleux, M. P.

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wang, S.

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Watanabe, M.

Watanabe, T.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Webb, W. W.

Wei, A.

Wenseleers, W.

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wu, C. M.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Wu, P. W.

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Xu, C.

Xu, D. S.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Yablonovitch, E.

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Yagi, T.

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63(22), 2993–2995 (1993).
[CrossRef]

Yang, M. H.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Yang, Z. S.

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Yao, J. N.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Yeh, C. S.

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

Zhang, J. P.

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63(22), 2993–2995 (1993).
[CrossRef]

Zhou, G.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zweifel, D. A.

ACS Nano (1)

A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3(7), 1906–1912 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12(9), 611–614 (2002).
[CrossRef]

Adv. Mater. (2)

Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20(5), 914–919 (2008).
[CrossRef]

P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), 1438–1441 (2000).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Appl. Phys. Lett. (3)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80(2), 312–314 (2002).
[CrossRef]

Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63(22), 2993–2995 (1993).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process. 73(5), 561–566 (2001).
[CrossRef]

Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys., A Mater. Sci. Process. 86(4), 427–431 (2007).
[CrossRef]

Chem. Commun. (Camb.) (2)

W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37(37), 4430–4432 (2008).
[CrossRef]

W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. (Camb.) 32(32), 4853–4855 (2009).
[CrossRef]

Chem. Mater. (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13(7), 2313–2322 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

Coord. Chem. Rev. (1)

J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Faraday Discuss. (1)

J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Girault, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 125, 145–156, discussion 195–219 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104(26), 6152–6163 (2000).
[CrossRef]

J. Phys. Chem. B (1)

C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103(18), 3737–3741 (1999).
[CrossRef]

J. Phys. D Appl. Phys. (1)

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[CrossRef] [PubMed]

Langmuir (1)

Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering,” Langmuir 25(8), 4708–4714 (2009).
[CrossRef] [PubMed]

Macromolecules (2)

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
[CrossRef]

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
[CrossRef]

Nano Lett. (1)

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Small (1)

Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), 1144–1148 (2009).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) UV/Vis spectra of AuNRs. Insert: TEM image of the AuNRs. (b) UV/Vis spectra of acrylamide/bis-acrylamide, aqueous RB, pure TEA, and DMSO.

Fig. 2
Fig. 2

The optical setup and control scheme of the femtosecond laser imaging and microfabrication system.

Fig. 3
Fig. 3

TPA spectrum of RB as function of excitation wavelength.

Fig. 4
Fig. 4

A 10 x 10 μm2 square polymer microstructure with AuNRs imaged with (a) TPL and (b) SEM.

Fig. 5
Fig. 5

Cross pattern of AuNRs created by photothermal reshaping acquired with (a) TPL and (b) TEM.

Fig. 6
Fig. 6

3D TPP microstructure imaged by (a) 3D TPL (Insert: 2D bright-field image) and (b) 2D TPL image of the microstructure in (a) at the base.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F 1 2 δ η 2 ϕ C g p f τ 8 n P 2 π λ
δ η 2 λ τ F .

Metrics