Abstract

We perform a theoretical linear study of the spectral and polarization threshold characteristics of coupled-cavity Vertical-Surface-Emitting Lasers (CC-VCSEL) on the base of a simple matrix approach. We show that strong wavelength discrimination can be achieved in CC-VCSELs by slightly detuning the cavities. However, polarization discrimination is not provided by the coupled-cavity design. We also consider the case of reverse-biasing one of the cavities, i.e. using it as a modulator via linear and/or quadratic electrooptic effect. Such a CC-VCSEL can act as a voltage-controlled polarization or wavelength switching device that is decoupled from the laser design. We also show that using QD stack instead of quantum wells in the top cavity would lead to significant reduction of the driving electrical field.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
    [CrossRef]
  2. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
    [CrossRef]
  3. P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997).
    [CrossRef]
  4. J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
    [CrossRef]
  5. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
    [CrossRef]
  6. V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
    [CrossRef]
  7. D. M. Crasso, and K. D. Choquette, "Threshold and Modal Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 39, 1526-1530 (2003).
    [CrossRef]
  8. A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
    [CrossRef]
  9. A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
    [CrossRef]
  10. V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
    [CrossRef]
  11. D. M. Crasso, and K. D. Choquette, "Temperature-Dependent Polarization Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 41, 127-131 (2005).
    [CrossRef]
  12. L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
    [CrossRef]
  13. C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
    [CrossRef]
  14. M. Born, and E. Wolf, Principles of Optics (Wiley, New York, 1970).
  15. A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996).
    [CrossRef]
  16. K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, "Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications," in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds., 560, 403-417, (American Institute of Physics, Melville, N.Y., 2001).
  17. A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
    [CrossRef]
  18. M. P. Earnshaw, and D. W. E. Allsopp, "Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells," IEEE J. Quantum Electron. 37, 897-904 (2001).
    [CrossRef]
  19. D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000).
    [CrossRef]
  20. K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
    [CrossRef]
  21. J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
    [CrossRef]
  22. G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
    [CrossRef]

2010 (1)

C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
[CrossRef]

2007 (1)

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

2005 (2)

J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
[CrossRef]

D. M. Crasso, and K. D. Choquette, "Temperature-Dependent Polarization Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 41, 127-131 (2005).
[CrossRef]

2004 (2)

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
[CrossRef]

2003 (1)

D. M. Crasso, and K. D. Choquette, "Threshold and Modal Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 39, 1526-1530 (2003).
[CrossRef]

2002 (1)

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

2001 (2)

M. P. Earnshaw, and D. W. E. Allsopp, "Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells," IEEE J. Quantum Electron. 37, 897-904 (2001).
[CrossRef]

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

2000 (5)

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000).
[CrossRef]

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

1999 (1)

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

1997 (2)

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997).
[CrossRef]

1996 (1)

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996).
[CrossRef]

1994 (1)

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

Allerman, A. A.

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

Allsopp, D. W. E.

M. P. Earnshaw, and D. W. E. Allsopp, "Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells," IEEE J. Quantum Electron. 37, 897-904 (2001).
[CrossRef]

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

Almuneau, G.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

Badilita, V.

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
[CrossRef]

Batty, W.

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

Bhatnagar, A.

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

Binder, R.

D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000).
[CrossRef]

Brunner, M.

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

Burak, D.

D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000).
[CrossRef]

Carlin, J. F.

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

Carlin, J.-F.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
[CrossRef]

Chen, C.

C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
[CrossRef]

Chen, X.

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

Choquette, K. D.

C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
[CrossRef]

D. M. Crasso, and K. D. Choquette, "Temperature-Dependent Polarization Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 41, 127-131 (2005).
[CrossRef]

D. M. Crasso, and K. D. Choquette, "Threshold and Modal Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 39, 1526-1530 (2003).
[CrossRef]

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

Chow, W. W.

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

Chusseau, L.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

Coldren, L. A.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

Cong, D. Y.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Crasso, D. M.

D. M. Crasso, and K. D. Choquette, "Temperature-Dependent Polarization Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 41, 127-131 (2005).
[CrossRef]

D. M. Crasso, and K. D. Choquette, "Threshold and Modal Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 39, 1526-1530 (2003).
[CrossRef]

Danckaert, J.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

Debernardi, P.

J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
[CrossRef]

Earnshaw, M. P.

M. P. Earnshaw, and D. W. E. Allsopp, "Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells," IEEE J. Quantum Electron. 37, 897-904 (2001).
[CrossRef]

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

Fischer, A. J.

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

Fischer, M.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Gasquet, D.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

Geib, K. M.

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

Georgievski, A.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

Gulden, K.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

Hibbs-Brenner, M.

C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
[CrossRef]

Hilpert, H.

P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997).
[CrossRef]

Houdre, R.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

Hovel, R.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

Huntington, A.

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

Ilegems, M.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
[CrossRef]

Illegems, M.

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

Jansen van Doornen, A. K.

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996).
[CrossRef]

Johnson, K.

C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
[CrossRef]

Koeth, J.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Kovsh, A. R.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Krestnikov, I.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Lematre, A.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Martinez, A.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Merghem, K.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Miard, A.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Michalzik, R.

J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
[CrossRef]

Michler, P.

P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997).
[CrossRef]

Moloney, J. V.

D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000).
[CrossRef]

Moreau, G.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Moser, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

Nagler, B.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

Oesterle, U.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

Oestertle, U.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

Ostermann, J. M.

J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
[CrossRef]

Panajotov, K.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
[CrossRef]

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

Pellandini, P.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

Ramdane, A.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Reiner, G.

P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997).
[CrossRef]

Rinaldi, F.

J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
[CrossRef]

Serkland, D. K.

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

Stanley, R. P.

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

Thienpont, H.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

van Exter, M. P.

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996).
[CrossRef]

Veretennicoff, I.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

Verschaffelt, G.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

Vershaffelt, G.

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

Voisin, P.

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

Weisbuch, C.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

Wesbuch, C.

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

Woerdman, J. P.

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996).
[CrossRef]

Appl. Phys. Lett. (9)

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997).
[CrossRef]

P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997).
[CrossRef]

J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000).
[CrossRef]

A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001).
[CrossRef]

A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999).
[CrossRef]

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996).
[CrossRef]

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000).
[CrossRef]

G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007).
[CrossRef]

IEE Proc., Optoelectron. (1)

L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002).
[CrossRef]

IEEE J. Quantum Electron. (6)

C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010).
[CrossRef]

A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000).
[CrossRef]

M. P. Earnshaw, and D. W. E. Allsopp, "Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells," IEEE J. Quantum Electron. 37, 897-904 (2001).
[CrossRef]

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004).
[CrossRef]

D. M. Crasso, and K. D. Choquette, "Threshold and Modal Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 39, 1526-1530 (2003).
[CrossRef]

D. M. Crasso, and K. D. Choquette, "Temperature-Dependent Polarization Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 41, 127-131 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000).
[CrossRef]

J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005).
[CrossRef]

Phys. Rev. A (1)

D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000).
[CrossRef]

Other (2)

M. Born, and E. Wolf, Principles of Optics (Wiley, New York, 1970).

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, "Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications," in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds., 560, 403-417, (American Institute of Physics, Melville, N.Y., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of CC-VCSEL with refractive indices and thicknesses denoted.

Fig. 2
Fig. 2

CC-VCSEL resonant wavelengths (a) and threshold gains (b) and (c) as a function of the relative difference of the two cavity thicknesses, Δ = 2(dtCdbC)/(dtC + dbC). Red (blue) line denotes the long (short) wavelength mode. Gain is provided by the two cavities in (b) and from the bottom cavity only in (c). (d-g) Optical power distributions for the short [(d) and (f)] and long [(e) and (g)] CC-VCSEL wavelength mode for the symmetric case Δ = 0 [(d) and (e)] and for the asymmetric case Δ = 0.02 [(f) and (g)]. Refractive index profile of CC-VCSEL structure is shown by black lines.

Fig. 3
Fig. 3

CC-VCSEL resonant wavelengths (a) and threshold gains (b) as a function of the relative difference of the two cavity thicknesses Δ. Red (blue) line denotes the long (short) wavelength mode. Solid (dashed) lines are for 17.5 (27.5) pairs in the middle DBR. Gain is provided by the bottom cavity only.

Fig. 4
Fig. 4

Birefringent CC-VCSEL with nbrf = 4 × 10−4: (a) resonant wavelengths and (b) threshold gains as a function of the relative difference of the two cavity thicknesses Δ. Red (blue) line denotes the long (short) wavelength mode. Solid (dashed) line denotes x:[110] (y:[11̄0]) LP mode. Gain is provided by the bottom cavity only.

Fig. 5
Fig. 5

Birefringent CC-VCSEL with nbrf = 4 × 10−4: (a,c) resonant wavelengths and (b,d) threshold gains as a function of the modulation electric field EtCav applied to the top-cavity. Red (blue) line denotes the long (short) wavelength mode. Solid (dashed) line denotes x (y) LP modes. (a,b) only linear electro-refractive effect; (c,d) both linear and quadratic electro-refractive effect. Gain is provided by the bottom cavity.

Fig. 6
Fig. 6

Birefringent CC-VCSEL with nbrf = 4 × 10−4: (a) resonant wavelengths and (b) threshold gains as a function of the modulation electric field EtCav applied to the top-cavity, which is slightly detuned: Δ = 5.5 × 10−3; (c) same as (b) but with additional gain dichroism of 15 cm−1; (d) same as (c) but for quantum dot stack with effective thickness of dQD = 10nm, (e) same as (b) but for detuning of Δ = 1.5 × 10−3; (f) same as (e) but with a biased field of EBS = −1 × 107V/m.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m i = [ cos ( β i ) j n i sin ( β i ) j n i sin ( β i ) cos ( β i ) ] ,
[ E i H i ] = [ M 11 , i M 12 , i M 21 , i M 22 , i ] [ E N + 1 H N + 1 ] , M i = k = i + 1 N m k ,
[ E i + E i ] = [ 1 2 1 2 n i 1 2 1 2 n i ] [ E i H i ]
E 0 + = E 0 2 + H 0 2 n 0 = 0 ,
E 0 = M 11 , 0 + n N + 1 M 12 , 0 H 0 = M 21 , 0 + n N + 1 M 22 , 0
n x , y t C a ν = n 0 x , y t C a ν ± 1 2 ( n 0 x , y t C a ν ) 3 r E t C a ν ,
n Q W t C a ν = n 0 Q W t C a ν + 1 2 ( n 0 x , y t C a ν ) 3 s E t C a ν , 2

Metrics