S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
H. Benisty, “Dark modes, slow modes, and coupling in multimode systems,” J. Opt. Soc. Am. B 26, 718–724 (2009).
[Crossref]
I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8, 274–280 (2008).
[Crossref]
T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).
[Crossref]
J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
[Crossref]
[PubMed]
N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).
[Crossref]
E. Reyes, A. A. Krokhin, and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes,” Phys. Rev. B 72, 155118 (2005).
[Crossref]
S. Kinoshita and S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]
[PubMed]
L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]
[PubMed]
A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002).
[Crossref]
K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).
[Crossref]
K. Watanabe, “Numerical integration schemes used on the differential theory for anisotropic gratings,” J. Opt. Soc. Am. A 19, 2245–2252 (2002).
[Crossref]
S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).
[Crossref]
L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B 48, 14936–14943 (1993).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
D. Maystre, “Rigorous vector theories of diffraction gratings,” Prog. Opt. 21, 1–67 (1984).
[Crossref]
A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002).
[Crossref]
R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1997).
R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1997).
H. Benisty, “Dark modes, slow modes, and coupling in multimode systems,” J. Opt. Soc. Am. B 26, 718–724 (2009).
[Crossref]
A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8, 274–280 (2008).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B 48, 14936–14943 (1993).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref]
[PubMed]
B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).
[Crossref]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8, 274–280 (2008).
[Crossref]
S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B 48, 14936–14943 (1993).
[Crossref]
A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]
I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8, 274–280 (2008).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002).
[Crossref]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B 48, 14936–14943 (1993).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref]
[PubMed]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ., 1995).
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
S. Kinoshita and S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
E. Reyes, A. A. Krokhin, and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes,” Phys. Rev. B 72, 155118 (2005).
[Crossref]
A. A. Krokhin and E. Reyes, “Homogenization of magnetodielectric photonic crystals,” Phys. Rev. Lett. 93, 023904 (2004).
[Crossref]
[PubMed]
A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]
L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]
L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
[Crossref]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8, 274–280 (2008).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
D. Maystre, “Rigorous vector theories of diffraction gratings,” Prog. Opt. 21, 1–67 (1984).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ., 1995).
N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).
[Crossref]
P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).
[Crossref]
K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).
[Crossref]
B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).
[Crossref]
E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).
[Crossref]
M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[Crossref]
P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).
[Crossref]
B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).
[Crossref]
E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).
[Crossref]
M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
E. Reyes, A. A. Krokhin, and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes,” Phys. Rev. B 72, 155118 (2005).
[Crossref]
A. A. Krokhin and E. Reyes, “Homogenization of magnetodielectric photonic crystals,” Phys. Rev. Lett. 93, 023904 (2004).
[Crossref]
[PubMed]
E. Reyes, A. A. Krokhin, and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes,” Phys. Rev. B 72, 155118 (2005).
[Crossref]
P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B 48, 14936–14943 (1993).
[Crossref]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref]
[PubMed]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]
S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).
[Crossref]
P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]
[PubMed]
A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ., 1995).
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).
[Crossref]
S. Kinoshita and S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]
[PubMed]
S. Kinoshita and S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]
[PubMed]
S. Visnovsky and K. Yasumoto, “Multilayer anisotropic bi-periodic diffraction gratings,” Czech. J. Phys. 51, 229–247 (2001).
[Crossref]
I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8, 274–280 (2008).
[Crossref]
L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]
L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).
[Crossref]
L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
[Crossref]
L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[Crossref]
E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).
[Crossref]
T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).
[Crossref]
K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).
[Crossref]
K. Watanabe, “Numerical integration schemes used on the differential theory for anisotropic gratings,” J. Opt. Soc. Am. A 19, 2245–2252 (2002).
[Crossref]
P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]
[PubMed]
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]
B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).
[Crossref]
N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).
[Crossref]
S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009).
[Crossref]
K. B. Dossou, C. G. Poulton, L. C. Botten, S. Mahmoodian, R. C. McPhedran, and C. M. de Sterke, “Modes of symmetric composite defects in two-dimensional photonic crystals,” Phys. Rev. A 80, 013826 (2009).
[Crossref]
A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).
[Crossref]
S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Effective dielectric constant of periodic composite structures,” Phys. Rev. B 48, 14936–14943 (1993).
[Crossref]
F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gosele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101 (2001).
[Crossref]
A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002).
[Crossref]
E. Reyes, A. A. Krokhin, and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes,” Phys. Rev. B 72, 155118 (2005).
[Crossref]
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]
A. A. Krokhin and E. Reyes, “Homogenization of magnetodielectric photonic crystals,” Phys. Rev. Lett. 93, 023904 (2004).
[Crossref]
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]
[PubMed]
K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref]
[PubMed]
D. Maystre, “Rigorous vector theories of diffraction gratings,” Prog. Opt. 21, 1–67 (1984).
[Crossref]
S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[Crossref]
[PubMed]
N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15, 3169–3176 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3169 .
[Crossref]
[PubMed]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ., 1995).
R. Petit (ed.), Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).
P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express16, 17295–17301 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17295 .
[Crossref]
[PubMed]
R. Antos, “Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures,” Opt. Express17, 7269–7274 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7269 .
[Crossref]
[PubMed]
R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1997).
S. Mahmoodian, C. G. Poulton, K. B. Dossou, R. C. McPhedran, L. C. Botten, and C. M. de Sterke, “Modes of shallow photonic crystal waveguides: semi-analytic treatment,” Opt. Express17, 19629–19643 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19629 .
[Crossref]
[PubMed]