Abstract

Long-pulse supercontinuum sources are initiated by modulation instability and consequently suffer from stochastic shot-to-shot variations of their spectral power density. In this paper, we provide a measurement of pulse-to-pulse fluctuations over the whole supercontinuum spectrum, and we show that their spectral dependence follows the group index curve of the fiber. Then, we demonstrate a significant reduction of supercontinuum pulse-to-pulse fluctuations in the visible by using a photonic crystal fiber with longitudinally tailored guidance properties. We finally show numerically that this new source would allow a significant improvement of the signal-to-noise ratio in fluorescence microscopy.

© 2010 OSA

Full Article  |  PDF Article
Related Articles
Harnessing and control of optical rogue waves in supercontinuum generation

John. M. Dudley, Goëry Genty, and Benjamin J. Eggleton
Opt. Express 16(6) 3644-3651 (2008)

Toward visible cw-pumped supercontinua

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor
Opt. Lett. 33(18) 2122-2124 (2008)

Rogue-wave-like characteristics in femtosecond supercontinuum generation

M. Erkintalo, G. Genty, and J. M. Dudley
Opt. Lett. 34(16) 2468-2470 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  2. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
    [Crossref]
  3. J. L. Hall and T. W. Hänsch, Femtosecond optical frequency comb technology: principle, operation and applications, eds. J. Ye and S. T. Cundiff) 1–11 (Springer, 2005).
  4. B. Barviau, B. Kibler, S. Coen, and A. Picozzi, “Toward a thermodynamic description of supercontinuum generation,” Opt. Lett. 33, 2833–2835 (2008).
    [Crossref] [PubMed]
  5. P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
    [Crossref] [PubMed]
  6. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
    [Crossref] [PubMed]
  7. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
    [Crossref] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  9. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
    [Crossref] [PubMed]
  10. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
    [Crossref] [PubMed]
  11. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [Crossref]
  12. J. M. Stone and J. C. Knight, “Visibly white light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [Crossref] [PubMed]
  13. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
    [Crossref] [PubMed]
  14. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
    [Crossref] [PubMed]
  15. G. Genty and J. M. Dudley, “Route to Coherent Supercontinuum Generation in the Long Pulse Regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
    [Crossref]
  16. M. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999).
    [Crossref]
  17. H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of solitonamplified spontaneous-emission interaction,” J. Opt. Soc. Am. B 16, 2223–2232 (1999).
    [Crossref]
  18. C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
    [Crossref]
  19. M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374, 691–695 (2010).
    [Crossref]
  20. A. Mussot, A. Kudlinski, M. I. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of rare temporal events in CW-pumped supercontinuum,” Opt. Express 17, 17010–17015 (2009).
    [Crossref] [PubMed]
  21. N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009).
    [Crossref]
  22. G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
    [Crossref]
  23. M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
    [Crossref] [PubMed]
  24. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34, 2468–2470 (2009).
    [Crossref] [PubMed]
  25. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007).
    [Crossref] [PubMed]
  26. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30, 1980–1982 (2005).
    [Crossref] [PubMed]
  27. J. Nathan Kutz, C Lyngå, and B. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13, 3989–3998 (2005).
    [Crossref] [PubMed]
  28. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27, 1556–1564 (2009).
    [Crossref]
  29. “Supercontinuum generation in dispersion-varying fibers,” Chap. 12 in Supercontinuum generation in optical fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University Press, 2010).
    [Crossref]
  30. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fiber for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [Crossref] [PubMed]
  31. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
    [Crossref] [PubMed]
  32. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
    [Crossref] [PubMed]
  33. P. M. Moselund, “Long-pulse supercontinuum light sources,” PhD dissertation, Technical University of Denmark (2009).
  34. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14, 9844–9853 (2006).
    [Crossref] [PubMed]
  35. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [Crossref] [PubMed]
  36. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mgi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [Crossref]
  37. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12, 2844–2850 (2004).
    [Crossref] [PubMed]
  38. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
    [Crossref]
  39. D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. Neil, P. M. French, E. Nye, G. Stamp, and P. Courtney, “Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source,” Opt. Lett. 30, 3353–3355 (2005).
    [Crossref]
  40. J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
    [Crossref] [PubMed]
  41. G. N. Ranganathan and H. J. Koester, “Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision,” J. Neurophysiol.(2010).
    [Crossref] [PubMed]
  42. L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
    [Crossref] [PubMed]

2010 (8)

P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
[Crossref] [PubMed]

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
[Crossref] [PubMed]

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374, 691–695 (2010).
[Crossref]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
[Crossref] [PubMed]

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

G. N. Ranganathan and H. J. Koester, “Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision,” J. Neurophysiol.(2010).
[Crossref] [PubMed]

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
[Crossref] [PubMed]

2009 (10)

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[Crossref] [PubMed]

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mgi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
[Crossref]

A. Mussot, A. Kudlinski, M. I. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of rare temporal events in CW-pumped supercontinuum,” Opt. Express 17, 17010–17015 (2009).
[Crossref] [PubMed]

N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009).
[Crossref]

A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27, 1556–1564 (2009).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34, 2468–2470 (2009).
[Crossref] [PubMed]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
[Crossref] [PubMed]

G. Genty and J. M. Dudley, “Route to Coherent Supercontinuum Generation in the Long Pulse Regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

2008 (5)

2007 (4)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007).
[Crossref] [PubMed]

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

2006 (4)

2005 (3)

2004 (2)

2000 (1)

1999 (2)

Akhmediev, N.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009).
[Crossref]

Ankiewicz, A.

N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009).
[Crossref]

Audry, L.

Auksorius, E.

Bang, O.

Barviau, B.

Beaugeois, M.

Berg, H. C.

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
[Crossref] [PubMed]

Birks, T. A.

Bjarklev, A.

Bolger, J.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

Bouazaoui, M.

Bouwmans, G.

Burchfield, J. G.

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

Coen, S.

B. Barviau, B. Kibler, S. Coen, and A. Picozzi, “Toward a thermodynamic description of supercontinuum generation,” Opt. Lett. 33, 2833–2835 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cordeiro, C. M. B.

Courtney, P.

Darnton, N. C.

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
[Crossref] [PubMed]

de Sterke, C. M.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mgi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
[Crossref]

Dias, F.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

Douay, M.

Dudley, J. M.

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
[Crossref] [PubMed]

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

G. Genty and J. M. Dudley, “Route to Coherent Supercontinuum Generation in the Long Pulse Regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34, 2468–2470 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dunsby, C.

Eggleton, B.

Eggleton, B. J.

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

Elson, D. S.

Erkintalo, M.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

French, P. M.

Frosz, M. H.

Genty, G.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
[Crossref] [PubMed]

G. Genty and J. M. Dudley, “Route to Coherent Supercontinuum Generation in the Long Pulse Regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34, 2468–2470 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[Crossref] [PubMed]

George, A. K.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Grant, D. M.

Hall, J. L.

J. L. Hall and T. W. Hänsch, Femtosecond optical frequency comb technology: principle, operation and applications, eds. J. Ye and S. T. Cundiff) 1–11 (Springer, 2005).

Hänsch, T. W.

J. L. Hall and T. W. Hänsch, Femtosecond optical frequency comb technology: principle, operation and applications, eds. J. Ye and S. T. Cundiff) 1–11 (Springer, 2005).

Hill, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Hughes, W. E.

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

Jalali, B.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Jauslin, H. R.

P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
[Crossref] [PubMed]

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

Judge, A. C.

Kamins, C. F.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

Kibler, B.

Knig, F.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Knight, J. C.

Koester, H. J.

G. N. Ranganathan and H. J. Koester, “Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision,” J. Neurophysiol.(2010).
[Crossref] [PubMed]

Kolobov, M.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374, 691–695 (2010).
[Crossref]

Kolobov, M. I.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Kubota, H.

Kudlinski, A.

Kuhlmey, B. T.

Kuklewicz, C.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Lafargue, C.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

Lehtonen, M.

Lelek, M.

Leonhardt, U.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Lopez, J. A.

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

Louvergneaux, E.

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374, 691–695 (2010).
[Crossref]

A. Mussot, A. Kudlinski, M. I. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of rare temporal events in CW-pumped supercontinuum,” Opt. Express 17, 17010–17015 (2009).
[Crossref] [PubMed]

Luan, F.

Ludvigsen, H.

Lyngå, C

McConnell, G.

Mele, K.

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

Mgi, E. C.

Moselund, P. M.

P. M. Moselund, “Long-pulse supercontinuum light sources,” PhD dissertation, Technical University of Denmark (2009).

Munro, I.

Mussot, A.

Nakazawa, M.

Nathan Kutz, J.

Neil, M. A.

Nye, E.

Pant, R.

Philbin, T. G.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Picozzi, A.

P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
[Crossref] [PubMed]

B. Barviau, B. Kibler, S. Coen, and A. Picozzi, “Toward a thermodynamic description of supercontinuum generation,” Opt. Lett. 33, 2833–2835 (2008).
[Crossref] [PubMed]

Popov, S. V.

Randoux, S.

P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
[Crossref] [PubMed]

Ranganathan, G. N.

G. N. Ranganathan and H. J. Koester, “Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision,” J. Neurophysiol.(2010).
[Crossref] [PubMed]

Ranka, J. K.

Requejo-Isidro, J.

Robertson, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Ropers, C.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Rulkov, A. B.

Russell, P. St. J.

Schimpf, D.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14, 9844–9853 (2006).
[Crossref] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Soto-Crespo, J.

N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009).
[Crossref]

Stamp, G.

Stentz, A. J.

Stone, J. M.

Suret, P.

P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
[Crossref] [PubMed]

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

Sylvestre, T.

Taki, M.

Tamura, K.

Tamura, K. R.

Taylor, J. R.

Travers, J. C.

Turner, L.

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
[Crossref] [PubMed]

Vallotton, P.

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

Wadsworth, W. J.

Windeler, R. S.

Yulin, A. V.

Zhang, R.

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
[Crossref] [PubMed]

Electron. Lett. (1)

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Genty and J. M. Dudley, “Route to Coherent Supercontinuum Generation in the Long Pulse Regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

J. Bacteriol. (1)

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of Flagella during Bacterial Swarming,” J. Bacteriol. 192, 3259–3267 (2010).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Microscopy (1)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kamins, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microscopy 227, 203–215 (2007).
[Crossref]

J. Neurophysiol. (1)

G. N. Ranganathan and H. J. Koester, “Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision,” J. Neurophysiol.(2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fiber,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Opt. Express (12)

J. M. Stone and J. C. Knight, “Visibly white light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[Crossref] [PubMed]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008).
[Crossref] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[Crossref] [PubMed]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14, 9844–9853 (2006).
[Crossref] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[Crossref] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fiber for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[Crossref] [PubMed]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
[Crossref] [PubMed]

A. Mussot, A. Kudlinski, M. I. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of rare temporal events in CW-pumped supercontinuum,” Opt. Express 17, 17010–17015 (2009).
[Crossref] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007).
[Crossref] [PubMed]

G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12, 2844–2850 (2004).
[Crossref] [PubMed]

J. Nathan Kutz, C Lyngå, and B. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13, 3989–3998 (2005).
[Crossref] [PubMed]

Opt. Lett. (8)

D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. Neil, P. M. French, E. Nye, G. Stamp, and P. Courtney, “Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source,” Opt. Lett. 30, 3353–3355 (2005).
[Crossref]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30, 1980–1982 (2005).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
[Crossref] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34, 2468–2470 (2009).
[Crossref] [PubMed]

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[Crossref] [PubMed]

M. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

B. Barviau, B. Kibler, S. Coen, and A. Picozzi, “Toward a thermodynamic description of supercontinuum generation,” Opt. Lett. 33, 2833–2835 (2008).
[Crossref] [PubMed]

Phys. Lett. A (3)

N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373, 2137–2145 (2009).
[Crossref]

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010).
[Crossref]

M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374, 691–695 (2010).
[Crossref]

Phys. Rev. Lett. (2)

P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Knig, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008).
[Crossref] [PubMed]

Traffic (1)

J. G. Burchfield, J. A. Lopez, K. Mele, P. Vallotton, and W. E. Hughes, “Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy,” Traffic 11, 429–439 (2010).
[Crossref] [PubMed]

Other (3)

J. L. Hall and T. W. Hänsch, Femtosecond optical frequency comb technology: principle, operation and applications, eds. J. Ye and S. T. Cundiff) 1–11 (Springer, 2005).

P. M. Moselund, “Long-pulse supercontinuum light sources,” PhD dissertation, Technical University of Denmark (2009).

“Supercontinuum generation in dispersion-varying fibers,” Chap. 12 in Supercontinuum generation in optical fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University Press, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measured spectrum of the supercontinuum. Vertical rectangles depict the 10 nm bandpass filters used for plots (c). (b) Pulse-to-pulse variations as a function of wavelength across the supercontinuum spectrum (red squares, left axis) and computed group index curve of the PCF (black line, right axis). (c) Sample of filtered supercontinuum pulses (plotted end to end) recorded with a fast oscilloscope after 10 nm bandpass filters centered around 650, 800, 1400 et 1650 nm (from top to bottom). (d) Corresponding histograms displaying the number of occurrence as a function of amplitude signal over 10,000 pulses at 650, 800, 1400 et 1650 nm (from top to bottom).

Fig. 3
Fig. 3

(a) Spectra measured in 15 m-long uniform PCF (red) and tapered PCF (blue line). (b) Pulse-to-pulse fluctuations as a function of wavelength across the supercontinuum spectra obtained in the tapered fiber (blue squares) and uniform fiber (red circles). Inset: closeup in the visible region of main interest for fluorescence imaging applications.

Fig. 2
Fig. 2

(a) Evolution of the outer diameter versus fiber length measured during the drawing process for the tapered PCF (blue line) and the uniform PCF (red line). Inset: Scanning electron microscope images of the tapered fiber input (left) and output (right), with the same scale. (b) Left axis: measured group velocity dispersion (markers) and polynomial fit of the experimental data (lines) at the input and output of the PCF taper. Open squares and dotted lines corresponds to the taper input; full circles and solid lines corresponds to the taper output. Right axis: calculated nonlinear coefficient.

Fig. 4
Fig. 4

Simulations of the scanning fluorescence microscopy image obtained (a) with the stabilized supercontinuum source employing an optimized tapered fiber characterized by pulse-to-pulse power fluctuations of 10 % at 500 nm and (b) with the standard supercontinuum source based on a uniform fiber characterized by pulse-to-pulse power fluctuations of 80 % at 500 nm.

Metrics