Abstract

A new way to make broadband polarizers on silicon-on-insulator (SOI) waveguides is proposed, analyzed and characterized. The characteristics of the eigenmodes in a shallowly-etched SOI ridge optical waveguide are analyzed by using a full-vectorial finite-different method (FV-FDM) mode solver. The theoretical calculation shows that the loss of TE fundamental mode could be made very low while at the same time the TM fundamental mode has very large leakage loss, which is strongly dependent on the trench width. The leakage loss of the TM fundamental mode changes quasi-periodically as the trench width w tr varies. The formula of the period ∆w tr is given. By utilizing the huge polarization dependent loss of this kind of waveguide, a compact and simple optical polarizer based on a straight waveguide was demonstrated. The polarizer is fabricated on a 700nm-thick SOI wafer and then characterized by using a free-space optical system. The measured extinction ratio is as high as 25dB over a 100nm wavelength range for a 1mm-long polarizer.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Technol. Lett. 5(12), 1418–1420 (1993).
    [CrossRef]
  2. L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,” IEEE Trans. Microw. Theory Tech. 53(6), 1856–1862 (2005).
    [CrossRef]
  3. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  4. T. Yamazaki, J. Yamauchi, and H. Nakano, “A branch-type TE/TM wave splitter using a light-guiding metal line,” J. Lightwave Technol. 25(3), 922–928 (2007).
    [CrossRef]
  5. L. Z. Sun and G. L. Yip, “Analysis of metal-clad optical waveguide polarizers by the vector beam propagation method,” Appl. Opt. 33(6), 1047–1050 (1994).
    [PubMed]
  6. G. Y. Li and A. S. Xu, “Analysis of the TE-pass or TM-pass metal-clad polarizer with a resonant buffer layer,” J. Lightwave Technol. 26(10), 1234–1241 (2008).
    [CrossRef]
  7. R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
    [CrossRef]
  8. R.-C. Twu, C.-C. Huang, and W.-S. Wang, “TE-pass Zn-diffused liNbO3 waveguide polarizer,” Microw. Opt. Technol. Lett. 48(11), 2312–2314 (2006).
    [CrossRef]
  9. Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
    [CrossRef]
  10. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
    [CrossRef]
  11. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  12. Q. Wang and S. T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE J. Photon. 2(1), 49–56 (2010).
    [CrossRef]
  13. A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
    [CrossRef]
  14. K. Ogusu, “Optical strip waveguide: a detailed analysis including leaky modes,” J. Opt. Soc. Am. 73(3), 353–357 (1983).
    [CrossRef]
  15. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
    [CrossRef]

2010 (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Q. Wang and S. T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE J. Photon. 2(1), 49–56 (2010).
[CrossRef]

2009 (1)

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

2008 (2)

G. Y. Li and A. S. Xu, “Analysis of the TE-pass or TM-pass metal-clad polarizer with a resonant buffer layer,” J. Lightwave Technol. 26(10), 1234–1241 (2008).
[CrossRef]

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

2007 (2)

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
[CrossRef]

T. Yamazaki, J. Yamauchi, and H. Nakano, “A branch-type TE/TM wave splitter using a light-guiding metal line,” J. Lightwave Technol. 25(3), 922–928 (2007).
[CrossRef]

2006 (2)

R.-C. Twu, C.-C. Huang, and W.-S. Wang, “TE-pass Zn-diffused liNbO3 waveguide polarizer,” Microw. Opt. Technol. Lett. 48(11), 2312–2314 (2006).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

2005 (1)

L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,” IEEE Trans. Microw. Theory Tech. 53(6), 1856–1862 (2005).
[CrossRef]

1994 (1)

1993 (1)

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Technol. Lett. 5(12), 1418–1420 (1993).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

1983 (1)

1981 (1)

A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[CrossRef]

Asakawa, S.

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Technol. Lett. 5(12), 1418–1420 (1993).
[CrossRef]

Asquini, R.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Beccherelli, R.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Bellini, B.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Cui, Y.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

d’Alessandro, A.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Donisi, D.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Ho, S. T.

Q. Wang and S. T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE J. Photon. 2(1), 49–56 (2010).
[CrossRef]

Hsu, T. I.

A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[CrossRef]

Huang, C.-C.

R.-C. Twu, C.-C. Huang, and W.-S. Wang, “TE-pass Zn-diffused liNbO3 waveguide polarizer,” Microw. Opt. Technol. Lett. 48(11), 2312–2314 (2006).
[CrossRef]

Huang, Y.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

Koch, T. L.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Technol. Lett. 5(12), 1418–1420 (1993).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Lee, J.-B.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Li, G. Y.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Liu, F.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

Massaro, A.

L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,” IEEE Trans. Microw. Theory Tech. 53(6), 1856–1862 (2005).
[CrossRef]

Mitchell, A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
[CrossRef]

Nakano, H.

Ogusu, K.

Oliner, A. A.

A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[CrossRef]

Pafchek, R. M.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
[CrossRef]

Park, W.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Peng, J.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

Peng, S. T.

A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Pierantoni, L.

L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,” IEEE Trans. Microw. Theory Tech. 53(6), 1856–1862 (2005).
[CrossRef]

Rozzi, T.

L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,” IEEE Trans. Microw. Theory Tech. 53(6), 1856–1862 (2005).
[CrossRef]

Sanchez, A.

A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[CrossRef]

Schonbrun, E.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Sun, L. Z.

Tang, X.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

Tinker, M.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Twu, R.-C.

R.-C. Twu, C.-C. Huang, and W.-S. Wang, “TE-pass Zn-diffused liNbO3 waveguide polarizer,” Microw. Opt. Technol. Lett. 48(11), 2312–2314 (2006).
[CrossRef]

Wan, R.

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

Wang, Q.

Q. Wang and S. T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE J. Photon. 2(1), 49–56 (2010).
[CrossRef]

Wang, W.-S.

R.-C. Twu, C.-C. Huang, and W.-S. Wang, “TE-pass Zn-diffused liNbO3 waveguide polarizer,” Microw. Opt. Technol. Lett. 48(11), 2312–2314 (2006).
[CrossRef]

Webster, M. A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
[CrossRef]

Wu, Q.

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

Xu, A. S.

Yamauchi, J.

Yamazaki, T.

Yip, G. L.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in Si02-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

IEEE J. Photon. (1)

Q. Wang and S. T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE J. Photon. 2(1), 49–56 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic Liquid Crystal Optical Channel Waveguides on Silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J.-B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal tm polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett. 20(8), 641–643 (2008).
[CrossRef]

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent tm-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19(6), 429–431 (2007).
[CrossRef]

Y. Kokubun and S. Asakawa, “ARROW-type polarizer utilizing form birefringence in multilayer first cladding,” IEEE Photon. Technol. Lett. 5(12), 1418–1420 (1993).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,” IEEE Trans. Microw. Theory Tech. 53(6), 1856–1862 (2005).
[CrossRef]

A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II-New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Microw. Opt. Technol. Lett. (1)

R.-C. Twu, C.-C. Huang, and W.-S. Wang, “TE-pass Zn-diffused liNbO3 waveguide polarizer,” Microw. Opt. Technol. Lett. 48(11), 2312–2314 (2006).
[CrossRef]

Nat. Photonics (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The cross section of a shallowly-etched SOI ridge waveguide defined by two trenches.

Fig. 2
Fig. 2

The effective refractive index of the three eigenmodes (a), and the leakage loss for of the lowest three order eigenmodes (b), as a function of trench width.

Fig. 3
Fig. 3

The mode profiles when w tr = 4.15μm, h r = 140nm and w co = 0.8μm; (a) TE0; (b) TM0; (c) the higher order TE mode.

Fig. 4
Fig. 4

The mode profiles when w tr = 3.2μm, h r = 140nm and w co = 0.8μm; (a) TE0; (b) TM0; (c) the higher order TE mode.

Fig. 5
Fig. 5

The leakage losses of the TE0 mode and the TM0 mode for the cases of w co = 0.8, 0.9, 1.0, 1.2, 1.4, and 1.6μm as the trench width w tr varies. (a) h r = 110nm; (b) h r = 140nm.

Fig. 6
Fig. 6

The equivalent five-layer slab waveguide for the SOI ridge waveguide.

Fig. 7
Fig. 7

The leakage loss for TE (a) and TM (b) polarizations for a shallowly-etched SOI ridge waveguide (the rib height h r = 140nm).

Fig. 8
Fig. 8

The extinction ratio for a 1mm-long polarizer with the requirement of L TE≤0.1dB and l≤1mm. Here l = min(1mm, 0.1/L TE0).

Fig. 9
Fig. 9

The wavelength dependence of the leakage loss for TE and TM polarizations for a shallowly-etched SOI ridge waveguide with h r = 140nm, w co = 1.1μm, and w tr = 3μm.

Fig. 10
Fig. 10

The schematic configuration of the present SOI polarizer based on a straight waveguide.

Fig. 11
Fig. 11

The measurement setup.

Fig. 12
Fig. 12

The measured results for the transmissions of the TE0 and TM0 modes when w co = 1μm (a), and w co = 1.2μm (b); (c) the extinction ratio. The trench width is w tr = 2μm and the length L tr = 1mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 n cl _ neff _ TE 2 N TM 2 w tr k + 0 ϕ 2 ϕ 1 = m 2 π ,
Δ w tr = λ 2 n cl _ neff _ TE 2 N TM 2 ,

Metrics