Abstract

Nonlinear absorption of a newly synthesized organic inner salt Ge-150 dissolved in four different solvents (DMF, DMSO, acetonitrile and acetone) is investigated by the Z-scan technique with both nanosecond and picosecond pulses. When pulse energy surpasses a threshold and pulse-to-pulse separation is shorter than a characteristic time, all the four solutions show absorption weakening induced by cross-pulse effects in the picosecond regime. However, only two of them (Ge-150 dissolved in DMF and DMSO) show this weakening in the nanosecond regime. By conducting a simple verification experiment, we verify this absorption weakening is induced by solute damage related to solvent effect rather than solute migration. A simple theoretical model is proposed to interpret the experimental phenomenon.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
    [CrossRef]
  2. M. G. Kuzyk, and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, NewYork, 1998).
  3. H. S. Nalwa, and S. Miyata, Nonlinear Optics of Organic Materials and Polymers (CRC, Boca Raton, FL, 1997)
  4. P. N. Prasad, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  5. J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, New York, 1994).
  6. R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
    [CrossRef]
  7. T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
    [CrossRef] [PubMed]
  8. C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
    [CrossRef] [PubMed]
  9. X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
    [CrossRef]
  10. X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
    [CrossRef]
  11. B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
    [CrossRef]
  12. J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
    [CrossRef] [PubMed]
  13. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  14. W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63(12), 1613–1615 (1993).
    [CrossRef]
  15. J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
    [CrossRef]
  16. T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. VanStryland, and S. Shi, “Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions,” J. Opt. Soc. Am. B 15(5), 1497–1501 (1998).
    [CrossRef]
  17. C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
    [CrossRef] [PubMed]
  18. J. Y. Yang, Y. L. Song, and J. H. Gu, “Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution,” Chin. Phys. B 18, 1–7 (2009).
  19. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
    [CrossRef]
  20. T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chem. Phys. 116(6), 2536–2541 (2002).
    [CrossRef]
  21. T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72(20), 2505–2507 (1998).
    [CrossRef]

2011 (1)

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

2010 (2)

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

2009 (4)

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

J. Y. Yang, Y. L. Song, and J. H. Gu, “Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution,” Chin. Phys. B 18, 1–7 (2009).

2008 (1)

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

2004 (1)

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

2002 (1)

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chem. Phys. 116(6), 2536–2541 (2002).
[CrossRef]

1998 (3)

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72(20), 2505–2507 (1998).
[CrossRef]

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. VanStryland, and S. Shi, “Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions,” J. Opt. Soc. Am. B 15(5), 1497–1501 (1998).
[CrossRef]

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

1993 (2)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63(12), 1613–1615 (1993).
[CrossRef]

1992 (1)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Arai, C.

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

Bosshard, C.

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

Brun, R.

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

Chang, C. K.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

Chen, C. W.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

Coulter, D. R.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

Diederich, F.

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

Dogariu, A.

Feng, Y.

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Ge, J. F.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

Gu, J. H.

J. Y. Yang, Y. L. Song, and J. H. Gu, “Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution,” Chin. Phys. B 18, 1–7 (2009).

Gubler, U.

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

Gunter, P.

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

Hagan, D. J.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. VanStryland, and S. Shi, “Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions,” J. Opt. Soc. Am. B 15(5), 1497–1501 (1998).
[CrossRef]

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Hu, J. K.

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chem. Phys. 116(6), 2536–2541 (2002).
[CrossRef]

Huang, T. H.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chem. Phys. 116(6), 2536–2541 (2002).
[CrossRef]

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72(20), 2505–2507 (1998).
[CrossRef]

Ihara, M.

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

Jin, X.

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Kaiser, M.

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

Lee, L. S.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

Leu, C. C.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

Li, C. W.

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Li, N. J.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

Li, X. B.

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

Li, Y. C.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

Lin, M. S.

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72(20), 2505–2507 (1998).
[CrossRef]

Liu, B. Q.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

Lu, J. M.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

Mansour, K.

Martin, R. E.

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

Palffy-Muhoray, P.

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63(12), 1613–1615 (1993).
[CrossRef]

Perry, J. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

Qiu, L. H.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

Said, A. A.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. VanStryland, and S. Shi, “Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions,” J. Opt. Soc. Am. B 15(5), 1497–1501 (1998).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Sence, M. J.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Shi, G.

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

Shi, S.

Shi, X. L.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

Shui, M.

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Song, Y. L.

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

J. Y. Yang, Y. L. Song, and J. H. Gu, “Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution,” Chin. Phys. B 18, 1–7 (2009).

Stryland, E. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

Su, X. Y.

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Sun, R.

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

Tang, J. L.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

Tykwinski, R. R.

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

VanStryland, E. W.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. VanStryland, and S. Shi, “Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions,” J. Opt. Soc. Am. B 15(5), 1497–1501 (1998).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wang, C. C.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

Wang, Y. X.

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Wei, T. H.

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chem. Phys. 116(6), 2536–2541 (2002).
[CrossRef]

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72(20), 2505–2507 (1998).
[CrossRef]

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wei, T. Y.

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

Wittlin, S.

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

Wu, T. T.

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

Xia, T.

Xu, H. Y.

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Yang, J. Y.

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

J. Y. Yang, Y. L. Song, and J. H. Gu, “Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution,” Chin. Phys. B 18, 1–7 (2009).

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Yang, K.

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Yang, S.

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

Zhang, X. R.

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

Zhao, W.

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63(12), 1613–1615 (1993).
[CrossRef]

Appl. Phys. B (1)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Stryland, J. W. Perry, and D. R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines,” Appl. Phys. B 54(1), 46–51 (1992).
[CrossRef]

Appl. Phys. Lett. (2)

T. H. Wei, T. H. Huang, and M. S. Lin, “Signs of nonlinear refraction in chloroaluminum phthalocyanine solution,” Appl. Phys. Lett. 72(20), 2505–2507 (1998).
[CrossRef]

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63(12), 1613–1615 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

X. Jin, G. Shi, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, Y. X. Wang, K. Yang, and Y. L. Song, “The study of excited state absorptions induced solute migration using two-beam pump–probe Z-scan methods,” Chem. Phys. Lett. 489(4-6), 259–262 (2010).
[CrossRef]

Chin. Phys. B (2)

J. Y. Yang, Y. L. Song, and J. H. Gu, “Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution,” Chin. Phys. B 18, 1–7 (2009).

X. Jin, Y. X. Wang, M. Shui, C. W. Li, J. Y. Yang, X. R. Zhang, K. Yang, and Y. L. Song, “The theory and experiment of solute migration caused by excited state absorptions,” Chin. Phys. B 19(1), 014217 (2010).
[CrossRef]

Dyes Pigments (1)

B. Q. Liu, R. Sun, J. F. Ge, N. J. Li, X. L. Shi, L. H. Qiu, and J. M. Lu, “The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts,” Dyes Pigments 88(1), 50–56 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. VanStryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

J. Chem. Phys. (3)

T. H. Wei, C. C. Wang, T. T. Wu, C. W. Chen, X. B. Li, T. H. Huang, S. Yang, and T. Y. Wei, “Mass transport following impulsive optical excitation,” J. Chem. Phys. 120(17), 8031–8038 (2004).
[CrossRef] [PubMed]

C. K. Chang, Y. C. Li, C. W. Chen, L. S. Lee, J. L. Tang, C. C. Wang, C. C. Leu, T. H. Wei, T. H. Huang, and Y. L. Song, “Solute migration caused by excited state absorptions,” J. Chem. Phys. 130(2), 024511 (2009).
[CrossRef] [PubMed]

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chem. Phys. 116(6), 2536–2541 (2002).
[CrossRef]

J. Med. Chem. (1)

J. F. Ge, C. Arai, M. Kaiser, S. Wittlin, R. Brun, and M. Ihara, “Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives,” J. Med. Chem. 51(12), 3654–3658 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

J. Y. Yang, Y. X. Wang, X. R. Zhang, C. W. Li, X. Jin, M. Shui, and Y. L. Song, “Characterization of the transient thermal-lens effect using top-hat beam Z-scan,” J. Phys. At. Mol. Opt. Phys. 42(22), 225404 (2009).
[CrossRef]

J. Phys. Chem. B (2)

C. W. Li, K. Yang, Y. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. B 113(48), 15730–15733 (2009).
[CrossRef] [PubMed]

R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, “Structure-Property Relationships in Third-Order Nonlinear Optical Chromophores,” J. Phys. Chem. B 102(23), 4451–4465 (1998).
[CrossRef]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[CrossRef]

Other (4)

M. G. Kuzyk, and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, NewYork, 1998).

H. S. Nalwa, and S. Miyata, Nonlinear Optics of Organic Materials and Polymers (CRC, Boca Raton, FL, 1997)

P. N. Prasad, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Molecular structure of Ge-150.

Fig. 2
Fig. 2

Synthese step of Ge-150.

Fig. 3
Fig. 3

Linear absorption spectrum of Ge-150/DMF.

Fig. 4
Fig. 4

Open aperture transmittance curves obtained in the ns Z-scan for Ge-150/DMF solution with different input energy, the solid lines are theoretical fits.

Fig. 5
Fig. 5

Normalized transmittance value at z = 0 for Ge-150/DMF solution versus input energy Ein .

Fig. 6
Fig. 6

The open-aperture Z-scan curves of Ge-150/DMF solution at 35.0 μJ when stepped in two opposite direction. Square: -z side to the + z side; asterisks: + z side to the -z side.

Fig. 7
Fig. 7

The open aperture Z-scan curves of Ge-150/DMF solution at 22.4 μJ with different pulse repetition frequency.

Fig. 8
Fig. 8

Open aperture transmittance curve obtained in the ns Z-scan for Ge-150/DMSO solution with different energy Ein .

Fig. 9
Fig. 9

Open aperture transmittance curve obtained in the ns Z-scan for Ge-150/acetonitrile solution with different energy.

Fig. 10
Fig. 10

Open aperture transmittance curve obtained in the ns Z-scan for Ge-150/acetone solution with different energy.

Fig. 11
Fig. 11

Open aperture transmittance curve obtained in the ps top-hat Z-scan for Ge-150/DMF solution with different input energy, the solid lines are theoretical fits.

Fig. 14
Fig. 14

Open aperture transmittance curve obtained in the ps top-hat Z-scan for Ge-150/acetone solution with different input energy.

Fig. 12
Fig. 12

Open aperture transmittance curve obtained in the ps top-hat Z-scan for Ge-150/DMSO solution with different input energy.

Fig. 13
Fig. 13

Open aperture transmittance curve obtained in the ps top-hat Z-scan for Ge-150/acetonitrile solution with different input energy.

Fig. 15
Fig. 15

The normalized transmittance at different delay time (td ) for Ge-150/DMF solution.

Fig. 16
Fig. 16

Open aperture transmittance curve obtained in the ns Z-scan for fresh and irradiated Ge-150/DMF solution with low and high input energy. (a) 2.6 μJ (b) 9.5 μJ

Fig. 17
Fig. 17

Open aperture transmittance curve obtained in the ps top-hat Z-scan for fresh and irradiated Ge-150/DMF solution with low and high input energy. (a) 0.6 μJ (b) 2.5 μJ

Fig. 18
Fig. 18

Theoretical open aperture transmittance curves in ns Z-scan for Ge-150/DMF solution at 10.1 μJ when stepped in two opposite directions. Square: -z side to the + z side; asterisks: + z side to the -z side.

Fig. 19
Fig. 19

Theoretical open aperture transmittance curves in ns Z-scan for Ge-150/DMF solution at 10.1 μJ with different τtherm .

Fig. 20
Fig. 20

Theoretical open aperture transmittance curves in ps Z-scan for Ge-150/DMF solution at 2.4 μJ with different τ t h e r m .

Fig. 21
Fig. 21

Theoretical open aperture transmittance curves in ns Z-scan for Ge-150/DMF solution at 10.1 μJ with different τp-p .

Tables (1)

Tables Icon

Table 1 τ t h e r m and τ s s obtained from the solute damage model for different solvents

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I 0 I ( z , r , t ) = I 00 [ ω 0 2 ω 2 ( z ) ] exp [ 2 r 2 ω 2 ( z ) ] × exp [ ( t τ ) 2 ] ,
d N S 0 d t = σ a S 0 N S 0 I ω + N 1 τ S 1 + N 3 τ T 1 ,
d N S 1 d t = σ a S 0 N S 0 I ω N 1 τ S 1 N 1 τ I S C ,
d N T 1 d t = N S 1 τ I S C N T 1 τ T 1 ,
I ( z ' , r , t ) z ' = α I ( z ' , r , t ) = [ σ a S 0 N S 0 ( z ' , r , t ) σ a S 1 N S 1 ( z ' , r , t ) σ a T 1 N T 1 ( z ' , r , t ) ] I ( z ' , r , t ) ,
F G ( z ' , r , t ) t I ( z ' , r , t ' ' ) d t ' ' .
F G ( z ' , r , t ) t F G ( z ' , r , t ) τ t h e r m .
N p ( z ' , r ) = F G ( z ' , r , 3 τ ) N S 0 ( z ' , r ) ( L / ( N L 1 ) ) ω ,
Y ( n p ) N ( N p ( z ' , r ) , b ) = 1 2 π b exp [ ( n p N p ( z ' , r ) ) 2 2 b 2 ] ,
N S 00 ( z ' , r ) = N S 0 ( z ' , r ) [ 1 N a N a + N p Y ( n p ) d n p ] .
N S 00 ( z ' , r , t ' ) t ' = D m d 2 N S 00 ( z ' , r , t ' ) ,

Metrics