Abstract

We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Ackerman, G. E. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in Proc. IEEE/MTT-S Int. Microwave Symp., pp. 51–54 (2007)
  2. D. Marpaung, C. Roeloffzen, and W. van Etten, “Enhanced dynamic range in a directly modulated analog photonic link,” IEEE Photon. Technol. Lett. 21(24), 1810–1812 (2009).
    [CrossRef]
  3. Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
    [CrossRef]
  4. M. J. LaGasse and S. Thaniyavarn, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
    [CrossRef]
  5. T. E. Darcie, J. Zhang, P. F. Driessen, and J.-J. Eun, “Class-B microwave- photonic link using optical frequency modulation and linear frequency discriminators,” J. Lightwave Technol. 25(1), 157–164 (2007).
    [CrossRef]
  6. J. Wyrwas and M. Wu, “Dynamic range of frequency modulated direct-detection analog fiber optic link,” J. Lightwave Technol. 27(24), 5552–5562 (2009).
    [CrossRef]
  7. J. Wyrwas, and M. Wu, “High dynamic range microwave photonic links using maximally linear FIR optical filters,” OFC/NFOEC, Los Angeles, CA, 2010, paper JWA43.
  8. X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
    [CrossRef]
  9. X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
    [CrossRef]
  10. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
    [CrossRef]
  11. D. Marpaung, C. Roeloffzen, R. Timens, A. Leinse, and M. Hoekman, “Design and realization of an integrated optical frequency modulation discriminator for a high performance microwave photonic link,” IEEE Topical meeting in Microwave Photonics (MWP 2010), Montreal, Canada, 131–134, (2010).
  12. F. Morichetti, A. Melloni, M. Martinelli, R. É. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007).
    [CrossRef]
  13. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp., pp. 71–74, (2005).
  14. R. G. Heideman, A. Leinse, W. Hoving, R. Dekker, D. H. Geuzebroek, E. J. Klein, R. Stoffer, C. G. H. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-Scale Integrated Optics using TriPleX Waveguide Technology: From UV to IR,” Proc. SPIE 7221, 72210R–1 - 72210R–15 (2009).
  15. J. Zhang, and T. E. Darcie, “Two-tone analysis of distortion suppression in microwave photonic links using phase modulation and fiber-Bragg grating filters,” International Symposium on Signals, Systems and Electronics, Montreal, Quebec, (2007).
  16. J. D. McKinney, K. Colladay, and K. J. Williams, “Linearization of phase-modulated analog optical links employing interferometric detection,” J. Lightwave Technol. 27(9), 1212–1220 (2009).
    [CrossRef]
  17. V. Urick, M. Godinez, P. Devgan, J. McKinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased Mach–Zehnder modulator followed by an erbium-doped fiber amplifier,” J. Lightwave Technol. 27(12), 2013–2019 (2009).
    [CrossRef]

2009

D. Marpaung, C. Roeloffzen, and W. van Etten, “Enhanced dynamic range in a directly modulated analog photonic link,” IEEE Photon. Technol. Lett. 21(24), 1810–1812 (2009).
[CrossRef]

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

J. D. McKinney, K. Colladay, and K. J. Williams, “Linearization of phase-modulated analog optical links employing interferometric detection,” J. Lightwave Technol. 27(9), 1212–1220 (2009).
[CrossRef]

V. Urick, M. Godinez, P. Devgan, J. McKinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased Mach–Zehnder modulator followed by an erbium-doped fiber amplifier,” J. Lightwave Technol. 27(12), 2013–2019 (2009).
[CrossRef]

J. Wyrwas and M. Wu, “Dynamic range of frequency modulated direct-detection analog fiber optic link,” J. Lightwave Technol. 27(24), 5552–5562 (2009).
[CrossRef]

2007

2002

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
[CrossRef]

1997

M. J. LaGasse and S. Thaniyavarn, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

Borreman, A.

Bowers, J. E.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

Bucholtz, F.

Choa, F.

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
[CrossRef]

Colladay, K.

Darcie, T. E.

Devgan, P.

Ding, G.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

Driessen, P. F.

Eun, J.-J.

Geuzebroek, D. H.

Godinez, M.

Heideman, R. É. G.

Herczfeld, P.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

Johansson, L.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

Kang, J.

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
[CrossRef]

Khurgin, J.

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
[CrossRef]

Klamkin, J.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

LaGasse, M. J.

M. J. LaGasse and S. Thaniyavarn, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

Leinse, A.

Li, Y.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

Liu, F.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

Marpaung, D.

D. Marpaung, C. Roeloffzen, and W. van Etten, “Enhanced dynamic range in a directly modulated analog photonic link,” IEEE Photon. Technol. Lett. 21(24), 1810–1812 (2009).
[CrossRef]

Martinelli, M.

McKinney, J.

McKinney, J. D.

Melloni, A.

Morichetti, F.

Qiu, M.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, and W. van Etten, “Enhanced dynamic range in a directly modulated analog photonic link,” IEEE Photon. Technol. Lett. 21(24), 1810–1812 (2009).
[CrossRef]

Su, Y.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

Thaniyavarn, S.

M. J. LaGasse and S. Thaniyavarn, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

Urick, V.

van Etten, W.

D. Marpaung, C. Roeloffzen, and W. van Etten, “Enhanced dynamic range in a directly modulated analog photonic link,” IEEE Photon. Technol. Lett. 21(24), 1810–1812 (2009).
[CrossRef]

Wang, R.

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

Wang, T.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

Williams, K. J.

Wu, M.

Wyrwas, J.

Xie, X.

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
[CrossRef]

Zhang, J.

Zhang, Z.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

Electron. Lett.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Marpaung, C. Roeloffzen, and W. van Etten, “Enhanced dynamic range in a directly modulated analog photonic link,” IEEE Photon. Technol. Lett. 21(24), 1810–1812 (2009).
[CrossRef]

Y. Li, R. Wang, G. Ding, J. Klamkin, L. Johansson, P. Herczfeld, and J. E. Bowers, “Novel phase modulator linearity measurement,” IEEE Photon. Technol. Lett. 21(19), 1405–1407 (2009).
[CrossRef]

M. J. LaGasse and S. Thaniyavarn, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Compact linearized optical FM discriminator,” IEEE Photon. Technol. Lett. 14(3), 384–386 (2002).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Choa, “Ring-assisted frequency discriminator with improved linearity,” IEEE Photon. Technol. Lett. 14(8), 1136–1138 (2002).
[CrossRef]

J. Lightwave Technol.

Other

E. I. Ackerman, G. E. Betts, W. K. Burns, J. C. Campbell, C. H. Cox, N. Duan, J. L. Prince, M. D. Regan, and H. V. Roussell, “Signal-to-noise performance of two analog photonic links using different noise reduction techniques,” in Proc. IEEE/MTT-S Int. Microwave Symp., pp. 51–54 (2007)

J. Wyrwas, and M. Wu, “High dynamic range microwave photonic links using maximally linear FIR optical filters,” OFC/NFOEC, Los Angeles, CA, 2010, paper JWA43.

D. Marpaung, C. Roeloffzen, R. Timens, A. Leinse, and M. Hoekman, “Design and realization of an integrated optical frequency modulation discriminator for a high performance microwave photonic link,” IEEE Topical meeting in Microwave Photonics (MWP 2010), Montreal, Canada, 131–134, (2010).

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp., pp. 71–74, (2005).

R. G. Heideman, A. Leinse, W. Hoving, R. Dekker, D. H. Geuzebroek, E. J. Klein, R. Stoffer, C. G. H. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-Scale Integrated Optics using TriPleX Waveguide Technology: From UV to IR,” Proc. SPIE 7221, 72210R–1 - 72210R–15 (2009).

J. Zhang, and T. E. Darcie, “Two-tone analysis of distortion suppression in microwave photonic links using phase modulation and fiber-Bragg grating filters,” International Symposium on Signals, Systems and Electronics, Montreal, Quebec, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematic of a phase modulation direct-detection microwave photonic link employing a balanced frequency discriminator photonic chip. BPD: balanced photodetector.

Fig. 2
Fig. 2

Schematic and the principle of operation of the photonic discriminator chip. The frequency discriminator chip consists of five fully-tunable optical ring resonators. Simulation results of the filter responses in A-D illustrate the principle to obtain the desired discriminator response. A cascade of responses from through ports of ORRs is used to linearize and to increase the suppression of a response from drop port of another ORR. Here the optical waveguide propagation loss of 0.2 dB/cm is used in the simulation.

Fig. 3
Fig. 3

Realization of the photonic chip discriminator. (a) SEM picture of the box-shaped optical waveguide cross section. (b) Optical waveguide layout of the discriminator. (c) Photograph of the photonic chip showing the leads and bondpads of the heaters. (d) The packaged photonic chip with fiber array units and wirebonded PCBs.

Fig. 4
Fig. 4

The measurement setup used to characterize the MPL. A two tone test frequencies of 1.995 GHz and 2.005 GHz are carried out. To overcome the fiber-to-chip coupling loss a pair of EDFAs is placed at the chip output.

Fig. 5
Fig. 5

Two tone test measurement results depicting signal and IMD powers and the photocurrent as functions of the laser bias current for (a) Drop response of Ring 3, (b) A cascade of drop response of Ring 3 and through of Ring 1. (c) A cascade of drop response of Ring 3 and through responses of Rings 1 and 5. (d) A balanced response from Ring 1, 3 and 5. The frequency change of the laser is 0.75GHz/mA.

Fig. 6
Fig. 6

Two tone test measurement results for a varying RF tone frequency for a Drop + through response from Out 1 of the photonic chip depicted against the laser bias current. (a) Fundamental tone. (b) Third order IMD.

Fig. 7
Fig. 7

Components of the system RIN extracted from the noise measurements. The RIN contribution from the laser amounts to −170 dB/Hz.

Fig. 8
Fig. 8

The measured SFDR for the balanced MPL biased at 452.6 mA (Fig. 5d). The measured values correspond to the measured noise PSD of −131 dBm/Hz while the predicted values are calculated with noise PSD of −166 dBm/Hz.

Tables (2)

Tables Icon

Table 1 MPL characteristics for the responses in Fig. 5

Tables Icon

Table 2 Calculated SFDR for various cases (RINlaser = −170 dB/Hz)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S th = ( 1 + g MPL ) k B T
S shot = 2 q I d R L
RIN sys = RIN laser + RIN ASE + RIN phase .
S RIN sys = RIN sys I d 2 R L .
S noise = S th + 1 4 ( S shot + S RIN total ) .
IMD n -SFDR ​   = n 1 n ( IIP n + G MPL S noise ( dBm/Hz ) )   ​ ​ .

Metrics