Abstract

We present a new class of plasmonic photoconductive THz emitters based on a complementary Sierpinski gasket fractal geometry. Due to the presence of sub-wavelength perforations on the surface of the antenna, these antennae operate in the plasmonic regime. By utilizing the unique self-similar and space filling of the tailored fractal surface and the plasmonic surface current spatial distribution, photoconductive THz emitters exhibiting superior performance (~80% increase in the emitted THz radiation power) to conventional bow-tie and Sierpinski gasket THz emitters are demonstrated. It is shown that the self-similarity of the surface plasmon current present on the antenna surface is responsible for this emission enhancement.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [CrossRef] [PubMed]
  2. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  3. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
    [CrossRef]
  4. F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
    [CrossRef]
  5. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
    [CrossRef]
  6. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [CrossRef]
  7. R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
    [CrossRef]
  8. R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
    [CrossRef]
  9. M. van Exter, C. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55(4), 337–339 (1989).
    [CrossRef]
  10. M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
    [CrossRef]
  11. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
    [CrossRef]
  12. F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
    [CrossRef]
  13. J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
    [CrossRef]
  14. X. Liang and M. Yan Wah Chia, “Multiband characteristics of two fractal antenna,” Microw. Opt. Techin. Let. 23(4), 242–245 (1999).
    [CrossRef]
  15. J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
    [CrossRef]

2010

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[CrossRef] [PubMed]

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

2009

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

2007

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

2006

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

2004

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

2003

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
[CrossRef]

2002

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

2001

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

1999

X. Liang and M. Yan Wah Chia, “Multiband characteristics of two fractal antenna,” Microw. Opt. Techin. Let. 23(4), 242–245 (1999).
[CrossRef]

1997

1989

M. van Exter, C. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55(4), 337–339 (1989).
[CrossRef]

Anguera, J.

J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
[CrossRef]

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Awad, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Beere, H. E.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

Borja, C.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Davies, A. G.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

Fattinger, C.

M. van Exter, C. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55(4), 337–339 (1989).
[CrossRef]

Furuya, T.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

Grischkowsky, D.

M. van Exter, C. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55(4), 337–339 (1989).
[CrossRef]

Hangyo, M.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Hattori, R.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Hirota, Y.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Hochrein, T.

Hou, B.

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Jansen, C.

Jördens, C.

Koch, M.

Krumbholz, N.

Kurz, H.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Liang, X.

X. Liang and M. Yan Wah Chia, “Multiband characteristics of two fractal antenna,” Microw. Opt. Techin. Let. 23(4), 242–245 (1999).
[CrossRef]

Linfield, E. H.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

Liu, L.

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Löffler, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Martinez, E.

J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
[CrossRef]

Matsuura, S.

Mendis, R.

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

Miyamaru, F.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Montero, R.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Nagel, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Nakashima, S.

Nishizawa, S.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Peters, O.

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

Puente, C.

J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
[CrossRef]

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Que, C. T.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Roskos, H. G.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Rozan, E.

J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
[CrossRef]

Saito, Y.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Sakai, K.

Salhi, M.

Scheller, M.

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

Sheng, P.

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Soler, J.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Sydlo, C.

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

Takeda, M. W.

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Tanaka, S.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Tani, M.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[CrossRef]

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

van Exter, M.

M. van Exter, C. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55(4), 337–339 (1989).
[CrossRef]

Vieweg, N.

Wen, W.

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Wietzke, S.

Yamaguchi, M.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Yamamoto, K.

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

Yan Wah Chia, M.

X. Liang and M. Yan Wah Chia, “Multiband characteristics of two fractal antenna,” Microw. Opt. Techin. Let. 23(4), 242–245 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. van Exter, C. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55(4), 337–339 (1989).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002).
[CrossRef]

F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl. Phys. Lett. 96(21), 211104 (2010).
[CrossRef]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 3117–3119 (2003).
[CrossRef]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, L. Liu, B. Hou, W. Wen, and P. Sheng, “Emission of terahertz radiations from fractal antennas,” Appl. Phys. Lett. 95(22), 221111 (2009).
[CrossRef]

Int. J. Infrared Milli.

M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas,” Int. J. Infrared Milli. 27(4), 531–546 (2006).
[CrossRef]

Microw. Opt. Techin. Let.

X. Liang and M. Yan Wah Chia, “Multiband characteristics of two fractal antenna,” Microw. Opt. Techin. Let. 23(4), 242–245 (1999).
[CrossRef]

Microw. Opt. Technol. Lett.

J. Anguera, C. Puente, E. Martinez, and E. Rozan, “The fractal Hilbert monopole: A two-dimensional wire,” Microw. Opt. Technol. Lett. 36(2), 102–104 (2003).
[CrossRef]

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Solid-State Electron.

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

R. Mendis and C. Sydlo, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004).
[CrossRef]

Other

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Complementary of (a) bow-tie, (b) first order, (c) second order, and (d) third order Sierpinski PC THz emitters

Fig. 2
Fig. 2

PC emitters of (a) the bow-tie, (b) first order, (c) second order, and (d) third order PC THz emitters.

Fig. 3
Fig. 3

Spectral power for the complementary bow-tie and Sierpinski PC THz emitters orders one to three and the bow-tie PC THz emitters.

Fig. 4
Fig. 4

Spectral power for the bow-tie and Sierpinski PC THz emitters orders one to three. Note that the scale is normalized to the complementary THZ PC emitters

Fig. 5
Fig. 5

Normalized power plots of the (a) complimentary Sierpinski PC THz emitter and (b) Sierpinski PC THz emitter. The amount of frequency shift (Δf) is shown on the top right corner of the figures.

Fig. 6
Fig. 6

The spatial distribution of the surface plasmon current density, Jx(x,y), in logarithmic scale along the axis of the Sierpinski PC THz emitters of (a) the bow-tie, (b) first order, (c) second order, and (d) third order, acquired at an intermediate peak emission frequency of 0.55 THz.

Fig. 7
Fig. 7

The spatial distribution of the surface plasmon current density, Jx(x,y), in logarithmic scale along the axis of the complementary Sierpinski PC THz emitters of (a) the bow-tie, (b) first order, (c) second order, and (d) third order, acquired at an intermediate peak emission frequency of 0.55 THz.

Fig. 8
Fig. 8

SEM images of the fractal-like geometries iteration orders (a) two, and (b) three applied only to one side of the antenna. The spatial distribution of the surface plasmon current density of the, Jx(x,y), in logarithmic scale along the axis of the fractal-like geometries iteration orders (a) two, and (b) three applied only to one side of the antenna, acquired at an intermediate peak emission frequency of 0.55 THz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A i = 1 i = 1 N ( 3 / 4 ) i

Metrics