Abstract

We describe a novel method of measuring PMD (polarization mode dispersion) of an in-service DWDM system by PMD compensation. We successfully demonstrate the method in a 1500-km ultra-long haul DWDM test bed. We further verify the feasibility of the method for in-service light path PMD monitoring in a field trial in a revenue-generating route in Verizon Network, and obtain an accurate PMD value without impacting live network traffic. The discrepancy between the measured and expected PMD values is less than 6% for all cases tested.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. Fisk, B. Basch, W. Kluge, J. Gatewood, P. J. Winzer, G. Raybon, T. Kissel, T. Carenza, A. H. Gnauck, A. Adamiecki, D. A. Fishman, N. M. Denkin, C. R. Doerr, M. Duelk T. Kawanishi K. Higuma Y. Painchaud, and C. Paquet, “Transmission of 107-Gb/s DQPSK over Verizon 504-km Commerical LambdaXtreme Transport System,”OFC’2008, paper NMC2.
  2. S. H. Kogelnik, and R. Jopson, “Polarization-mode dispersion”, in Optical Fiber Telecommunications, IVB, Edited by I. Kaminow and T. Li, Academic Press, ISBN 0–12–395173–9.
  3. C. D. Poole, and J. A. Nagel, “Polarization effects in Lightwave systems, in Optical Fiber Communications IIIA, I. P. Kaminnow and T. L. Koch, eds., Academic Press, CA. pp. 114-161.
  4. H. Bulow, “System outage probability due to first- and second-order PMD,” IEEE Photon. Technol. Lett. 10(5), 696–698 (1998).
    [CrossRef]
  5. R. Jopson, L. Nelson, G. Pendock, and A. Gnauck, “Polarization-mode dispersion impairment in return-to-zero and nonreturn-to-zero systems,” Proc. Optical Fiber Communication Conference, OFC’99, paper WE3 (1999).
  6. C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16(6), 372–374 (1991).
    [CrossRef] [PubMed]
  7. H. Bulow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Kuppers, and W. Weiershausen, “Measurement of the maximum speed of PMD fluctuation in installed field fiber,” Proc. OFC ’99, Technical Digest, W: 83–85 (1999)].
  8. J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
    [CrossRef]
  9. D. Waddy, P. Lu, L. Chen, and X. Bao, “The measurement of fast state of polarization changes in aerial fiber,” Proc.OFC ’01, paper ThA3 (2001).
  10. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
    [CrossRef]
  11. F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
    [CrossRef]
  12. M. Karlsson, J. Brentel, and P. Andrekson, “Long term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18(7), 941–951 (2000).
    [CrossRef]
  13. C. Poole and R. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
    [CrossRef]
  14. N. Gison and J. Pellaux, “Polarization mode dispersion: Time versus frequency domains,” Opt. Commun. 89(2-4), 316–323 (1992).
    [CrossRef]
  15. B. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eignenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
    [CrossRef]
  16. X. S. Yao, X. Chen, and T. Liu, “High accuracy polarization measurements using binary polarization rotators,” Opt. Express 18(7), 6667–6685 (2010).
    [CrossRef] [PubMed]
  17. L. Nelson, R. Jopson, and H. Kogelnik, “Muller matrix method for determining polarization-mode dispersion vectors,” Proc. European Conference on Optical Communications,” ECOC’99, Vol. 2, p. 10 (1999).
  18. C. Poole and D. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
    [CrossRef]
  19. K. Mochizuki, Y. Namihira, and H. Wakabayashi, “Polarization mode dispersion measurement in long single mode fibers,” Electron. Lett. 17(4), 153–154 (1981).
    [CrossRef]
  20. L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
    [CrossRef]
  21. D. Bebbington, J. Ellison, R. Schuh, X. Shan, A. Siddiqui, and S. Walker, “Fully polarimetric optical time-domain reflectometer with 1-m spatial resolution,” Proc. Optical Fiber Communication Conference, OFC’97, Technical Digest, pp. 185–186 (1997).
  22. H. Sunnerud, B. Olsson, and P. Andrekson, “Technique for characterization of polarization mode dispersion accumulation along optical fibers,” Electron. Lett. 34(4), 397–398 (1998).
    [CrossRef]
  23. N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
    [CrossRef]
  24. J. Cameron, L. Chen, X. Bao, and J. Stears, “Proc. European Conference on Optical Communication, ECOC’99, Vol. 1, p. 308 (1999).
  25. David.Chen, private communications.
  26. L. Yan, C. Yeh, G. Yang, L. Lin, Z. Chen, Y. Shi, A. Willner, and X. Steve Yao, “Programmable Group-Delay Module Using Binary Polarization Switching,” J. Lightwave Technol. 21(7), 1676–1684 (2003).
    [CrossRef]
  27. N. Kikuchi, “Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation,” J. Lightwave Technol. 19(4), 480–486 (2001).
    [CrossRef]
  28. M. Karlsson, C. Xie, H. Sunnerud, and P. Andrekson, “Higher-order polarization mode dispersion compensator with three degrees of freedom,” Proc. Optical Fiber Communication Conference, OFC’01, Paper MO1 (2001).
  29. S. Lanne, W. Idler, J.-P. Thiery, and J.-P. Hamaide, “Demonstration of adaptive PMD compensation at 40Gb/s,” Proc. Optical Fiber Communication Conference, OFC’01, Paper TuP3 (2001).
  30. J. Nagel, M. Chbat, L. Garrett, J. Soigne, N. Weaver, B. Desthieux, H. Bulow, A. McCormick, and R. Derosier, “Long-term PMD mitigation at 10Gb/s and time dynamics over high-PMD installed fiber, Proc. European Conference on Optical Communication, ECOC’2000, Vol. 2, p. 31(2000).

2010

2003

2001

2000

1998

H. Sunnerud, B. Olsson, and P. Andrekson, “Technique for characterization of polarization mode dispersion accumulation along optical fibers,” Electron. Lett. 34(4), 397–398 (1998).
[CrossRef]

H. Bulow, “System outage probability due to first- and second-order PMD,” IEEE Photon. Technol. Lett. 10(5), 696–698 (1998).
[CrossRef]

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
[CrossRef]

1996

N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
[CrossRef]

1994

C. Poole and D. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[CrossRef]

1992

N. Gison and J. Pellaux, “Polarization mode dispersion: Time versus frequency domains,” Opt. Commun. 89(2-4), 316–323 (1992).
[CrossRef]

B. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eignenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

1991

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[CrossRef]

C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16(6), 372–374 (1991).
[CrossRef] [PubMed]

1990

F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

1989

L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
[CrossRef]

1986

C. Poole and R. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

1981

K. Mochizuki, Y. Namihira, and H. Wakabayashi, “Polarization mode dispersion measurement in long single mode fibers,” Electron. Lett. 17(4), 153–154 (1981).
[CrossRef]

Andrekson, P.

M. Karlsson, J. Brentel, and P. Andrekson, “Long term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18(7), 941–951 (2000).
[CrossRef]

H. Sunnerud, B. Olsson, and P. Andrekson, “Technique for characterization of polarization mode dispersion accumulation along optical fibers,” Electron. Lett. 34(4), 397–398 (1998).
[CrossRef]

Bao, X.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
[CrossRef]

Brentel, J.

Bulow, H.

H. Bulow, “System outage probability due to first- and second-order PMD,” IEEE Photon. Technol. Lett. 10(5), 696–698 (1998).
[CrossRef]

Cameron, J.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
[CrossRef]

Chen, L.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
[CrossRef]

Chen, X.

Chen, Z.

Curti, F.

F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Daino, B.

F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

De Marchis, D.

F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Favin, D.

C. Poole and D. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[CrossRef]

Foschini, G. J.

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[CrossRef]

Gisin, B.

N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
[CrossRef]

Gisin, N.

N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
[CrossRef]

L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
[CrossRef]

Gison, N.

N. Gison and J. Pellaux, “Polarization mode dispersion: Time versus frequency domains,” Opt. Commun. 89(2-4), 316–323 (1992).
[CrossRef]

Heffner, B.

B. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eignenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

Karlsson, M.

Kikuchi, N.

Lin, L.

Liu, T.

Matera, F.

F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

Mochizuki, K.

K. Mochizuki, Y. Namihira, and H. Wakabayashi, “Polarization mode dispersion measurement in long single mode fibers,” Electron. Lett. 17(4), 153–154 (1981).
[CrossRef]

Nagel, J. A.

Namihira, Y.

K. Mochizuki, Y. Namihira, and H. Wakabayashi, “Polarization mode dispersion measurement in long single mode fibers,” Electron. Lett. 17(4), 153–154 (1981).
[CrossRef]

Olsson, B.

H. Sunnerud, B. Olsson, and P. Andrekson, “Technique for characterization of polarization mode dispersion accumulation along optical fibers,” Electron. Lett. 34(4), 397–398 (1998).
[CrossRef]

Passy, R.

N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
[CrossRef]

Pellaux, J.

N. Gison and J. Pellaux, “Polarization mode dispersion: Time versus frequency domains,” Opt. Commun. 89(2-4), 316–323 (1992).
[CrossRef]

L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
[CrossRef]

Poole, C.

C. Poole and D. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[CrossRef]

C. Poole and R. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

Poole, C. D.

C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16(6), 372–374 (1991).
[CrossRef] [PubMed]

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[CrossRef]

Shi, Y.

Stears, J.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
[CrossRef]

Steve Yao, X.

Sunnerud, H.

H. Sunnerud, B. Olsson, and P. Andrekson, “Technique for characterization of polarization mode dispersion accumulation along optical fibers,” Electron. Lett. 34(4), 397–398 (1998).
[CrossRef]

Thevenaz, L.

L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
[CrossRef]

von der Weid, J.

N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
[CrossRef]

L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
[CrossRef]

Wagner, R.

C. Poole and R. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

Wakabayashi, H.

K. Mochizuki, Y. Namihira, and H. Wakabayashi, “Polarization mode dispersion measurement in long single mode fibers,” Electron. Lett. 17(4), 153–154 (1981).
[CrossRef]

Willner, A.

Winters, J. H.

Yan, L.

Yang, G.

Yao, X. S.

Yeh, C.

Electron. Lett.

H. Sunnerud, B. Olsson, and P. Andrekson, “Technique for characterization of polarization mode dispersion accumulation along optical fibers,” Electron. Lett. 34(4), 397–398 (1998).
[CrossRef]

K. Mochizuki, Y. Namihira, and H. Wakabayashi, “Polarization mode dispersion measurement in long single mode fibers,” Electron. Lett. 17(4), 153–154 (1981).
[CrossRef]

C. Poole and R. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Gisin, B. Gisin, J. von der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photon. Technol. Lett. 8, 1671–1673 (1996).
[CrossRef]

H. Bulow, “System outage probability due to first- and second-order PMD,” IEEE Photon. Technol. Lett. 10(5), 696–698 (1998).
[CrossRef]

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10(9), 1265–1267 (1998).
[CrossRef]

B. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eignenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

J. Lightwave Technol.

N. Kikuchi, “Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation,” J. Lightwave Technol. 19(4), 480–486 (2001).
[CrossRef]

M. Karlsson, J. Brentel, and P. Andrekson, “Long term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18(7), 941–951 (2000).
[CrossRef]

L. Yan, C. Yeh, G. Yang, L. Lin, Z. Chen, Y. Shi, A. Willner, and X. Steve Yao, “Programmable Group-Delay Module Using Binary Polarization Switching,” J. Lightwave Technol. 21(7), 1676–1684 (2003).
[CrossRef]

C. Poole and D. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12(6), 917–929 (1994).
[CrossRef]

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[CrossRef]

F. Curti, B. Daino, D. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principle state of polarization in single mode fibers,” J. Lightwave Technol. 8(8), 1162–1166 (1990).
[CrossRef]

L. Thevenaz, J. Pellaux, N. Gisin, and J. von der Weid, “Birefringence measurement in fibers without polarizer,” J. Lightwave Technol. 7(8), 1207–1212 (1989).
[CrossRef]

Opt. Commun.

N. Gison and J. Pellaux, “Polarization mode dispersion: Time versus frequency domains,” Opt. Commun. 89(2-4), 316–323 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Karlsson, C. Xie, H. Sunnerud, and P. Andrekson, “Higher-order polarization mode dispersion compensator with three degrees of freedom,” Proc. Optical Fiber Communication Conference, OFC’01, Paper MO1 (2001).

S. Lanne, W. Idler, J.-P. Thiery, and J.-P. Hamaide, “Demonstration of adaptive PMD compensation at 40Gb/s,” Proc. Optical Fiber Communication Conference, OFC’01, Paper TuP3 (2001).

J. Nagel, M. Chbat, L. Garrett, J. Soigne, N. Weaver, B. Desthieux, H. Bulow, A. McCormick, and R. Derosier, “Long-term PMD mitigation at 10Gb/s and time dynamics over high-PMD installed fiber, Proc. European Conference on Optical Communication, ECOC’2000, Vol. 2, p. 31(2000).

D. Bebbington, J. Ellison, R. Schuh, X. Shan, A. Siddiqui, and S. Walker, “Fully polarimetric optical time-domain reflectometer with 1-m spatial resolution,” Proc. Optical Fiber Communication Conference, OFC’97, Technical Digest, pp. 185–186 (1997).

J. Cameron, L. Chen, X. Bao, and J. Stears, “Proc. European Conference on Optical Communication, ECOC’99, Vol. 1, p. 308 (1999).

David.Chen, private communications.

L. Nelson, R. Jopson, and H. Kogelnik, “Muller matrix method for determining polarization-mode dispersion vectors,” Proc. European Conference on Optical Communications,” ECOC’99, Vol. 2, p. 10 (1999).

D. Waddy, P. Lu, L. Chen, and X. Bao, “The measurement of fast state of polarization changes in aerial fiber,” Proc.OFC ’01, paper ThA3 (2001).

R. Jopson, L. Nelson, G. Pendock, and A. Gnauck, “Polarization-mode dispersion impairment in return-to-zero and nonreturn-to-zero systems,” Proc. Optical Fiber Communication Conference, OFC’99, paper WE3 (1999).

H. Bulow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Kuppers, and W. Weiershausen, “Measurement of the maximum speed of PMD fluctuation in installed field fiber,” Proc. OFC ’99, Technical Digest, W: 83–85 (1999)].

T. J. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. Fisk, B. Basch, W. Kluge, J. Gatewood, P. J. Winzer, G. Raybon, T. Kissel, T. Carenza, A. H. Gnauck, A. Adamiecki, D. A. Fishman, N. M. Denkin, C. R. Doerr, M. Duelk T. Kawanishi K. Higuma Y. Painchaud, and C. Paquet, “Transmission of 107-Gb/s DQPSK over Verizon 504-km Commerical LambdaXtreme Transport System,”OFC’2008, paper NMC2.

S. H. Kogelnik, and R. Jopson, “Polarization-mode dispersion”, in Optical Fiber Telecommunications, IVB, Edited by I. Kaminow and T. Li, Academic Press, ISBN 0–12–395173–9.

C. D. Poole, and J. A. Nagel, “Polarization effects in Lightwave systems, in Optical Fiber Communications IIIA, I. P. Kaminnow and T. L. Koch, eds., Academic Press, CA. pp. 114-161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The concept illustration of PMD monitoring by PMD compensation. PMDf is the PMD value of the fiber link and PMDb is the PMD setting of the compensator for best compensation.

Fig. 2
Fig. 2

Illustration of PMD compensator construction. PC: polarization controller. The PMD generator is made of 9 birefringence crystals, sandwiched with 8 MO polarization rotators. The PMD deterministically generator can generate 256 precise DGD values with a resolution of 0.35 ps and a range of 90 ps. The insert at right shows a typical DOP vs. DGD curve obtained by performing PMD compensation at each DGD setting.

Fig. 3
Fig. 3

System configuration for in-service PMD measurement by PMD compensation with a compensator shown in Fig. 2. The tunable channelized ASE (TCA) source with a 3-dB bandwidth around 0.3 nm can be precisely tuned to WDM ITU grid and is used to emulate 40Gbps WDM channels.

Fig. 4
Fig. 4

a) A typical DOP vs. DGD curve of PMD compensation at different DGD values. The DGD value at the peak DOP location is the effective PMD of the DUT (device under test) or SUT (system under test). In this case, the PMD of DUT is 17.9 ps. b) The PMD of DUT measured at different wavelength channels. The standard deviation of measurement is 0.6 ps.

Fig. 5
Fig. 5

Demonstration setup at Verizon’s 1500 km ultra-long haul test bed in Richardson, Texas. Top portion: Using a TCA source to measure PMD in the system. Bottom portion: using an in-service 40Gbps signal to measure the PMD in the system.

Fig. 6
Fig. 6

Experimental results of in-service link PMD measurement by PMD compensation. a) and b): PMD measurement of two emulators using a highly accurate PMD analyzer. c) and d): Instantaneous PMD (dots with error bars) and average PMD (line) obtained by PMD compensation method. The average PMD values obtained for the two different cases are close to those expected based on off-line measurement using a high precision PMD analyzer, considering that the PMD in the system include the contributions from the PMD emulator and the residue PMD of the system itself.

Fig. 7
Fig. 7

(a)-(c): experimental results of long term PMD monitoring using TCA source. (d)-(f): experimental results of long term monitoring using 40Gbps signal itself. (a) & (d): instant PMD vs. time; (b) & (e): average PMD vs. time; (c) & (f) probability density function of PMD of all PMD values in (a) and (d) respectively. Note that in the test of using TCA source, there are much more valid data points available because of the periodic 45 degree polarization rotation capability of the TCA source.

Fig. 8
Fig. 8

Field fiber route for the PMD measurement trial.

Fig. 9
Fig. 9

Field trial results. a) PMD measured over 16 DWDM empty channels. b) PMD monitoring over time of a single channel. DOP1 is the DOP measured before PMD compensator and DOP2 is the DOP after PMD compensator. The PMD in a real system is much more stable than that in a test bed.

Tables (2)

Tables Icon

Table 1 Experimental conditions of the 10 DWDM channels

Tables Icon

Table 2 Summary of demonstration at Verizon 1500-km test bed

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P M D = P M D 1 2 + P M D 2 2

Metrics