Abstract

We introduce resonant absorbers that consist of linear metal wires embedded inside of a titanium dioxide grating. We show that in these structures the guided-mode resonance may lead to the almost total absorption of one polarization component and greatly enhance the absorption in localized surface plasma resonance. In addition, we show that the structures have potential to function as filters or polarizing beamsplitters. Absorption of 99.67 % has been obtained together with the contrast of 6600 at the wavelength of 532 nm. This corresponds the extinction of 8.8597. The results have been verified experimentally by fabricating an absorbing filter with electron beam lithography and atomic layer deposition technique. The absorption is remarkably high considering the thickness of the structures which is only 219–333 nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hohenau, A. Leitner, and F. R. Aussenegg, "Near-field and far-field properties of nanoparticle arrays," in Surface Plasmon Nanophotonics (Springer, Dordrecht, 2007).
    [CrossRef]
  2. S. E. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, New York, 2007).
  3. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  5. S. S. Wang, and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993).
    [CrossRef] [PubMed]
  6. S. S. Wang, and R. Magnusson, "Multilayer waveguide-grating filters," Appl. Opt. 34, 2414-2420 (1995).
    [CrossRef] [PubMed]
  7. R. Magnusson, and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008).
    [CrossRef] [PubMed]
  8. X. Fu, K. Yi, J. Shao, and Z. Fan, "Nonpolarizing guided-mode resonance filter," Opt. Lett. 34, 124-125 (2009).
    [CrossRef] [PubMed]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
    [CrossRef]
  10. S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
    [CrossRef] [PubMed]
  11. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge university press, Cambridge, 2006).
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  13. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  14. H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
    [CrossRef]
  15. J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
    [CrossRef] [PubMed]
  16. J. Turunen, "Diffraction theory of microrelief gratings," in Micro-Optics, Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).
  17. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
    [CrossRef]
  18. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, "Atomic layer deposited titanium dioxide and its application in resonant waveguide grating," Appl. Opt. 49, 4321-4325 (2010).
    [CrossRef] [PubMed]
  19. J. P. Kottmann, and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  20. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, "Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness," Opt. Express 15, 10744-10752 (2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

X. Fu, K. Yi, J. Shao, and Z. Fan, "Nonpolarizing guided-mode resonance filter," Opt. Lett. 34, 124-125 (2009).
[CrossRef] [PubMed]

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

2005 (2)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

2003 (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

2001 (4)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
[CrossRef] [PubMed]

1995 (1)

1993 (1)

Alasaarela, T.

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Deng, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Fan, Z.

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Fu, X.

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Hiltunen, J.

Honkanen, S.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
[CrossRef] [PubMed]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Kuittinen, M.

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Lehmuskero, A.

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Li, H.

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Linden, S.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Liu, Q.

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Liu, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Magnusson, R.

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Martin, O. J. F.

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001).
[CrossRef] [PubMed]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Saastamoinen, T.

Säynätjoki, A.

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

Sciortino, P.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Shao, J.

Shokooh-Saremi, M.

Stenberg, P.

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Tervonen, A.

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

Vahimaa, P.

Walters, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, S. S.

Xia, H.

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Xie, S.

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Yi, K.

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Zhoua, X.

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Zhouc, R.

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

J. P. Kottmann, and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009).
[CrossRef]

Other (4)

J. Turunen, "Diffraction theory of microrelief gratings," in Micro-Optics, Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).

L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge university press, Cambridge, 2006).

A. Hohenau, A. Leitner, and F. R. Aussenegg, "Near-field and far-field properties of nanoparticle arrays," in Surface Plasmon Nanophotonics (Springer, Dordrecht, 2007).
[CrossRef]

S. E. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorbing grating geometry. Metal inside TiO2 is either gold or aluminum. The period of the grating is d, the line width is l, the width and the height of the metal wire are D1, and D2, respectively, the height of the bottom TiO2 layer is h1, the height of the TiO2 line is h2, and the distance between metal wire from the top of the grating is h3. The parallel (||) polarization indicates light with the electric field in the direction of the y-axis. The perpendicular (⊥) polarization indicates light with the electric field in the direction of the x-axis.

Fig. 2
Fig. 2

Cross section of the absorbing polarization filter corresponding to the design A. The sample was fabricated with electron beam lithography. The metal wires are aluminum and the surrounding material is atomic layer deposited titanium dioxide. The image is taken with scanning electron microscope.

Fig. 3
Fig. 3

Absorbance (A), reflectance (R) and transmittance (T) for TiO2 grating with gold wires inside. The absorption peak is located at the wavelength of 632.8 nm. The solid lines indicate the electric field polarized perpendicular to the grating lines and the dashed lines indicate the parallel polarization.

Fig. 4
Fig. 4

Intensity distribution and Poynting vectors of the electric field inside the absorbing gold grating. (a) represents the absorbed x-component and (b) the partly reflected and partly transmitted y-component. The scale is logarithmic.

Fig. 5
Fig. 5

Reflectance (R), transmittance (T), and absorbance (A) for the perpendicular (solid line) and the parallel component (dashed line) in the case of aluminum gratings. Light is incident at normal angle. (a) represents the design A and the design B. For the design B the contrast T/T|| = 6600 and the absorbance is 99.67 % at the wavelength of 532 nm.

Fig. 6
Fig. 6

Electric field intensities and the Poynting vector distributions for the absorbed components inside one grating period for the designs A (a) and B (b). Light is incident along the z-axis. In (a) the incident light is polarized perpendicularly to the grating lines. In (b) the incident field is polarized parallel to the grating lines. The material on the top of and on the sidewalls of aluminum is aluminum dioxide. The scale is logarithmic.

Fig. 7
Fig. 7

Electric field intensity and the direction of the energy flow is given for the design A in 10 deg angle of incidence with slightly altered grating parameters. The Poynting vector arrows show clearly that the light is coupled to guided-mode resonance and therefore absorbed.

Fig. 8
Fig. 8

Convergence of the gold grating for the perpendicular component in absorbance at the resonance wavelength 632.8 nm. The number of the diffraction orders used in the calculations is 2m+1. The poor convergence indicates the excitation of localized surface plasmons.

Fig. 9
Fig. 9

Experimental (black line) and theoretical (purple line) transmittance for the perpendicular (solid line) and the parallel (dashed line) component for the design A.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ ɛ metal } ɛ dielectric = 1 ,

Metrics