Abstract

We describe theoretical and experimental results on near-field interaction of two-dimensionally (2D) arrayed, high-permittivity spherical particles on a substrate in the Mie resonance scattering domain for surface nano-patterning processing. When a touching particle pair of Mie resonance particles on the substrate is considered, an electromagnetic mode different from the single particle mode is excited inside the particles, resulting in an intensity enhancement in a gap between two hotspots at particle-substrate contact points. As for 2D hexagonal close-packed particle arrays on the substrate, the refractive index of particle exhibiting a maximal enhancement factor for the 2D particle arrays is found to be shifted from the Mie resonance conditions for the single particle system.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, New York, 2001).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
    [CrossRef]
  4. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
    [CrossRef]
  5. P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
    [CrossRef]
  6. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
    [CrossRef]
  7. N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
    [CrossRef]
  8. T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
    [CrossRef]
  9. Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
    [CrossRef]
  10. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
    [CrossRef] [PubMed]
  11. A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
    [CrossRef]
  12. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  13. S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).
  14. G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
    [CrossRef]
  15. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
    [CrossRef]
  16. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
    [CrossRef] [PubMed]
  17. N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
    [CrossRef]
  18. Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
    [CrossRef]
  19. A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103(11), 113111 (2008).
    [CrossRef]
  20. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15(7), 4253–4267 (2007).
    [CrossRef] [PubMed]
  21. J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005).
    [CrossRef]
  22. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15(21), 13682–13688 (2007).
    [CrossRef] [PubMed]
  23. P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
    [CrossRef]
  24. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005).
    [CrossRef]
  25. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [CrossRef] [PubMed]
  26. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
    [CrossRef]
  27. N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
    [CrossRef]
  28. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
    [CrossRef]
  29. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
    [CrossRef]
  30. S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
    [CrossRef]
  31. Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
    [CrossRef]
  32. S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
    [CrossRef]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998).
  34. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  35. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
    [CrossRef] [PubMed]
  36. X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).
    [CrossRef]
  37. L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
    [CrossRef]
  38. B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
    [CrossRef]
  39. Y. Tanaka and M. Obara, “Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle,” Jpn. J. Appl. Phys. 48(12), 122002 (2009).
    [CrossRef]
  40. H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58(11), 6920–6937 (1998).
    [CrossRef]
  41. K. Ohtaka and Y. Tanabe, “Photonic Bands Using Vector Spherical Waves. II. Reflectivity, Coherence and Local Field,” J. Phys. Soc. Jpn. 65(7), 2276–2284 (1996).
    [CrossRef]

2010 (4)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

2009 (4)

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
[CrossRef]

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

Y. Tanaka and M. Obara, “Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle,” Jpn. J. Appl. Phys. 48(12), 122002 (2009).
[CrossRef]

2008 (3)

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103(11), 113111 (2008).
[CrossRef]

2007 (6)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
[CrossRef]

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15(7), 4253–4267 (2007).
[CrossRef] [PubMed]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15(21), 13682–13688 (2007).
[CrossRef] [PubMed]

2006 (6)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef] [PubMed]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

2005 (3)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005).
[CrossRef]

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005).
[CrossRef]

2004 (1)

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

2003 (1)

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

2002 (1)

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

1999 (1)

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).
[CrossRef]

1998 (1)

H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58(11), 6920–6937 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1996 (2)

A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
[CrossRef]

K. Ohtaka and Y. Tanabe, “Photonic Bands Using Vector Spherical Waves. II. Reflectivity, Coherence and Local Field,” J. Phys. Soc. Jpn. 65(7), 2276–2284 (1996).
[CrossRef]

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

1981 (1)

B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

1972 (2)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

1908 (1)

G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Aizpurua, J.

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Atanasov, P.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Atanasov, P. A.

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Bakker, R. M.

Barber, P.

B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Bartels, C.

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Boltasseva, A.

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

Bryant, G. W.

Chang, R.

B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dikovska, A.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Drachev, V. P.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Foteinopoulou, S.

Fujii, M.

S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
[CrossRef]

García De Abajo, F. J.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghoshal, A.

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103(11), 113111 (2008).
[CrossRef]

Gresillon, S.

Guo, W.

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

Hayashi, S.

S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
[CrossRef]

S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
[CrossRef]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Huang, J. P.

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005).
[CrossRef]

Huang, S. M.

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Imamova, S.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Jendrzejewski, R.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Jin, P.

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kaneko, K.

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Kik, P. G.

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103(11), 113111 (2008).
[CrossRef]

Kildishev, A. V.

König-Birk, J.

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Kuball, M.

A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
[CrossRef]

Kwok, H. S.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).
[CrossRef]

Leiderer, P.

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

Li, L.

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

Liu, Z.

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15(21), 13682–13688 (2007).
[CrossRef] [PubMed]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Lu, Y. F.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Luk’yanchuk, B.

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef] [PubMed]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Luk'yanchuk, B.

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Maris, H. J.

A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
[CrossRef]

Messinger, B.

B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Miao, L.

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Mie, G.

G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Miyanishi, T.

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

Miyazaki, H.

H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58(11), 6920–6937 (1998).
[CrossRef]

Mosbacher, M.

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

Nabatova-Gabain, N.

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Nedyalkov, N.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Nedyalkov, N. N.

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nishizawa, Y.

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Nurmikko, A. V.

A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
[CrossRef]

Obara, G.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Obara, M.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

Y. Tanaka and M. Obara, “Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle,” Jpn. J. Appl. Phys. 48(12), 122002 (2009).
[CrossRef]

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

Ohtaka, K.

H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58(11), 6920–6937 (1998).
[CrossRef]

K. Ohtaka and Y. Tanabe, “Photonic Bands Using Vector Spherical Waves. II. Reflectivity, Coherence and Local Field,” J. Phys. Soc. Jpn. 65(7), 2276–2284 (1996).
[CrossRef]

Pedersen, R. H.

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Pinchuk, A. O.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Romero, I.

Sakai, T.

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
[CrossRef]

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

Sawczak, M.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Schatz, G. C.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005).
[CrossRef]

Shalaev, V. M.

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[CrossRef]

Sliwinski, G.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Song, W. D.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Sun, X. W.

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).
[CrossRef]

Sun, Z.

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Takada, H.

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

Takeuchi, Y.

S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
[CrossRef]

Tanabe, Y.

K. Ohtaka and Y. Tanabe, “Photonic Bands Using Vector Spherical Waves. II. Reflectivity, Coherence and Local Field,” J. Phys. Soc. Jpn. 65(7), 2276–2284 (1996).
[CrossRef]

Tanaka, Y.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

Y. Tanaka and M. Obara, “Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle,” Jpn. J. Appl. Phys. 48(12), 122002 (2009).
[CrossRef]

Tanemura, S.

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Terai, A.

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Terakawa, M.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef] [PubMed]

Vandenbem, C.

Vertikov, A.

A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
[CrossRef]

Vigneron, J. P.

von Raben, K.

B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

Wang, Z. A.

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

Wang, Z. B.

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

Whitehead, D. J.

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

Xiao, J. J.

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005).
[CrossRef]

Yu, K. W.

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005).
[CrossRef]

Zenidaka, A.

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Zheng, Y. W.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996).
[CrossRef]

P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009).
[CrossRef]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Appl. Surf. Sci. (2)

P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007).
[CrossRef]

L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005).
[CrossRef]

S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009).
[CrossRef]

J. Appl. Phys. (3)

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103(11), 113111 (2008).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

J. Phys. D Appl. Phys. (1)

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

J. Phys. Soc. Jpn. (1)

K. Ohtaka and Y. Tanabe, “Photonic Bands Using Vector Spherical Waves. II. Reflectivity, Coherence and Local Field,” J. Phys. Soc. Jpn. 65(7), 2276–2284 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Tanaka and M. Obara, “Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle,” Jpn. J. Appl. Phys. 48(12), 122002 (2009).
[CrossRef]

Laser Photon. Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Nanotechnology (1)

N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007).
[CrossRef]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (6)

B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[CrossRef]

H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58(11), 6920–6937 (1998).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Other (2)

S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, New York, 2001).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics