Abstract

We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60km.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, (Bangalore, India, 1984), pp. 175-179.
  2. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
    [CrossRef]
  3. T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
    [CrossRef]
  4. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
    [CrossRef] [PubMed]
  5. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
    [CrossRef]
  6. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
    [CrossRef] [PubMed]
  7. T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
    [CrossRef]
  8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
    [CrossRef]
  9. Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
    [CrossRef]
  10. SECOQC White Paper on Quantum Key Distribution and Cryptography, http://www.secoqc.net/downloads/secoqc crypto wp.pdf, accessed Feb. 2009.
  11. T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J. Wang, H. Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan, "Field test of a practical secure communication network with decoy-state quantum cryptography," Opt. Express 17, 6540-6549 (2009).
    [CrossRef] [PubMed]
  12. C. Elliott, "Building the quantum network," N. J. Phys. 4, 46 (2002).
    [CrossRef]
  13. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, "Current status of the DARPA Quantum Network," in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138-149 (2005).
  14. X. Tang, L.-J. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. Bienfang, D. Su, R. F. Boisvert, C. Clark, and C. Williams, "Demonstration of an active quantum key distribution network," in Quantum Communications and Quantum Imaging IV, R. E. Meyers, Y.-H. Shih, K. S. Deacon, eds., Proc. SPIE 6305, 630506 (2006).
  15. S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
    [CrossRef]
  16. P. D. Townsend, "Quantum cryptography on multi-user optical fibre networks," Nature 385, 47-49 (1997).
    [CrossRef]
  17. P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
    [CrossRef]
  18. W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
    [CrossRef]
  19. A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, Y. Nambu, and A. Tomita, "Recent Progress in Quantum Key Distribution Network Technologies," European Conf. on Communication (ECOC 06) Th2.6.2 (2006).
  20. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
    [CrossRef]
  21. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbits secure key rate," Opt. Express 17, 6540-6549 (2009).
  22. W. Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
    [CrossRef] [PubMed]
  23. X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005).
    [CrossRef] [PubMed]
  24. H.-K. Lo, X.-F. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
    [CrossRef] [PubMed]
  25. X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005).
    [CrossRef]
  26. X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
    [CrossRef]
  27. Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, and J.-W. Pan, "Decoy-state quantum key distribution with polarized photons over 200 km," Opt. Express 18, 8587-8594 (2010).
    [CrossRef] [PubMed]
  28. D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).
  29. G. Brassard, and L. Salvail, Advances in Cryptology EUROCRYPT’93, Vol. 765 of Lecture Notes in Computer Science, (Springer, Berlin, 1994), pp. 410-423.

2010 (1)

2009 (5)

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbits secure key rate," Opt. Express 17, 6540-6549 (2009).

T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J. Wang, H. Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan, "Field test of a practical secure communication network with decoy-state quantum cryptography," Opt. Express 17, 6540-6549 (2009).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

2007 (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

2006 (1)

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

2005 (5)

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

H.-K. Lo, X.-F. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005).
[CrossRef]

X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
[CrossRef]

2004 (2)

D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

2003 (2)

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

W. Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
[CrossRef]

C. Elliott, "Building the quantum network," N. J. Phys. 4, 46 (2002).
[CrossRef]

1997 (3)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

P. D. Townsend, "Quantum cryptography on multi-user optical fibre networks," Nature 385, 47-49 (1997).
[CrossRef]

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
[CrossRef]

1995 (1)

S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
[CrossRef]

Abe, J.

T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
[CrossRef]

Asobe, M.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Assche, G. V.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Bao, X.-H.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Barnett, S. M.

S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
[CrossRef]

Blow, K. J.

S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
[CrossRef]

Brouri, R.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Cai, W.-Q.

Cerf, N. J.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Chapuran, T. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Chen, K.

Chen, L.-K.

Chen, T.-Y.

Chen, W.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Chen, Z.-B.

Dallmann, N.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Dardy, H.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Dixon, A. R.

Dynes, J. F.

Elliott, C.

C. Elliott, "Building the quantum network," N. J. Phys. 4, 46 (2002).
[CrossRef]

Feng, F.-Y.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Gisin, N.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Goodman, M. S.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Gottesman, D.

D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).

Grangier, P.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Grosshans, F.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Gui, Y.-Z.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Guo, G.-C.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Han, Z.-F.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Hasegawa, T.

T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
[CrossRef]

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Hirohata, T.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Honjo, T.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

Hughes, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Hwang, W. Y.

W. Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

Inoue, K.

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

Ishizuka, H.

T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
[CrossRef]

Jackel, J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Jin, X.-M.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Ju, L.

Kamada, H.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

L¨utkenhaus, N.

D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).

Li, N.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Liang, H.

Liu, S.-B.

Liu, W.-Y.

Liu, Y.

Lo, H.-K.

X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
[CrossRef]

H.-K. Lo, X.-F. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).

Ma, X.-F.

H.-K. Lo, X.-F. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
[CrossRef]

McCabe, K. P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

McNown, S. R.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Mercer, L.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Mo, X.-F.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Nishida, Y.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Nishioka, T.

T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
[CrossRef]

Nordholt, J. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Pan, J.-W.

Peng, C.-Z.

Peters, N. A.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Peterson, C. G.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Phoenix, S. J. D.

S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
[CrossRef]

Preskill, J.

D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).

Qi, B.

X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Runser, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Sahara, A.

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

Sharpe, A. W.

Shields, A. J.

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbits secure key rate," Opt. Express 17, 6540-6549 (2009).

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Suyama, M.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Tadanaga, O.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Takahashi, H.

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

Takesue, H.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Takiguchi, Y.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Tian, B.-L.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Tittel, W.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Tokura, Y.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Toliver, P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Townsend, P. D.

P. D. Townsend, "Quantum cryptography on multi-user optical fibre networks," Nature 385, 47-49 (1997).
[CrossRef]

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
[CrossRef]

S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
[CrossRef]

Tyagi, K. T.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Wan, X.

Wang, J.

Wang, J.-H.

Wang, X.-B.

X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005).
[CrossRef]

X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

Wei, G.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Wen, H.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Wen, K.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Wenger, J.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Wu, Q.-L.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Xu, F.-X.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Yamamoto, Y.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Yamazaki, E.

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

Yang, B.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Yang, J.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Yang, L.

Yang, T.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Yin, H.

Yin, J.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Yin, Z.-Q.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Yuan, Z. L.

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbits secure key rate," Opt. Express 17, 6540-6549 (2009).

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Zbinden, H.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

Zhang, J.

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

Zhang, T.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Zhang, Y.

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

Zhao, Y.

X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, "‘Plug and play’ systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Electron. Lett. (1)

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, "Field Experiment on a ‘Star Type’ Metropolitan Quantum Key Distribution Network," IEEE Photon. Technol. Lett. 21, 575-577 (2009).
[CrossRef]

T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "‘Circular type’ quantum key distribution," IEEE Photon. Technol. Lett. 14, 576-578 (2002).
[CrossRef]

J. Mod. Opt. (1)

S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, "Multi-user quantum cryptography on optical networks," J. Mod. Opt. 72, 1155-1163 (1995).
[CrossRef]

N. J. Phys. (3)

C. Elliott, "Building the quantum network," N. J. Phys. 4, 46 (2002).
[CrossRef]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, "Optical networking for quantum key distribution and quantum communications," N. J. Phys. 11, 105001 (2009).
[CrossRef]

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, "Megabits secure key rate quantum key distribution," N. J. Phys. 11, 045010 (2009).
[CrossRef]

Nat. Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Nature (2)

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

P. D. Townsend, "Quantum cryptography on multi-user optical fibre networks," Nature 385, 47-49 (1997).
[CrossRef]

Opt. Commun. (1)

T. Honjo, K. Inoue, A. Sahara, E. Yamazaki, and H. Takahashi, "Quantum key distribution experiment through a PLC matrix switch," Opt. Commun. 263, 120-123 (2006).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (2)

X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005).
[CrossRef]

X.-F. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005).
[CrossRef] [PubMed]

W. Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

H.-K. Lo, X.-F. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Quantum Inf. Comput. (1)

D. Gottesman, H.-K. Lo, N. L¨utkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 5, 325-360 (2004).

Other (6)

G. Brassard, and L. Salvail, Advances in Cryptology EUROCRYPT’93, Vol. 765 of Lecture Notes in Computer Science, (Springer, Berlin, 1994), pp. 410-423.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, Y. Nambu, and A. Tomita, "Recent Progress in Quantum Key Distribution Network Technologies," European Conf. on Communication (ECOC 06) Th2.6.2 (2006).

C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, "Current status of the DARPA Quantum Network," in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138-149 (2005).

X. Tang, L.-J. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. Bienfang, D. Su, R. F. Boisvert, C. Clark, and C. Williams, "Demonstration of an active quantum key distribution network," in Quantum Communications and Quantum Imaging IV, R. E. Meyers, Y.-H. Shih, K. S. Deacon, eds., Proc. SPIE 6305, 630506 (2006).

C. H. Bennett, and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, (Bangalore, India, 1984), pp. 175-179.

SECOQC White Paper on Quantum Key Distribution and Cryptography, http://www.secoqc.net/downloads/secoqc crypto wp.pdf, accessed Feb. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Metropolitan all-pass quantum communication network constitutes 4 nodes including USTC’, Wan’an, Meilan, and Wanxi. A circle link of 10 km goes back USTC through underground optic fiber cable, which is used to simulate a separately remote node USTC’. An additional node in Feixi county (finally moved to Tongcheng city) that is about 60 km fiber distance (130 km fiber distance) far from USTC’ site in Hefei city, is further connected to achieve an inter-city QKD network, when the USTC’ node serves as a trusted relay.

Fig. 2
Fig. 2

Schematic view of a QKD device terminal in the experimental setup. When the device serves as a transmitter, four polarizing states are generated by a 1550 nm laser diode after two cascaded BS with additional intensity modulation, before combined by another output BS. Signal and decoy states are also controlled at this stage by random choice. After suitable attenuation, the optical pulses go through a circulator before combining in a CWDM with synchronization pulse. When the terminal serves as a receiver, the optical pulses enter at CWDM, and then decode quantum signals out, for going through circulator at the detection part. Synchronization signal goes along another circulator for clock signal detection. Here, LD: Laser Diode; IM: Intensity Modulator; PBS: Polarization Beam Splitter; PC: Polarization Controller; ATT: Attenuator; CIRC: Circulator; FF: Fiber Filter; CWDM: Coarse Wavelength-division multiplexing.

Tables (2)

Tables Icon

Table 1 Measured specifications for QKD network

Tables Icon

Table 2 Measured and derived specifications for quantum network based on decoy states

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R q { Q μ f ( E μ ) H 2 ( E μ ) + Q 1 [ 1 H 2 ( e 1 ) ] } ,
Q 1 Q 1 L = μ 2 e μ μ ν ν 2 ( Q ν L e ν Q μ e μ ν 2 μ 2 Y 0 U μ 2 ν 2 μ 2 ) ,
e 1 e 1 U = E μ Q μ Y 0 L e μ / 2 Q 1 L ,
Q ν L = Q ν ( 1 10 N ν Q ν ) ,
Y 0 L = Y 0 ( 1 10 N 0 Y 0 ) ,
Y 0 U = Y 0 ( 1 + 10 N 0 Y 0 ) ,

Metrics