Abstract

We report on an integrated acousto-optic filter in domain inverted LiNbO3 using a coplanar electrode configuration, which can achieve complete optical switching at electrical powers as low as 50mW. These values are more than one order of magnitude lower than previously reported results [Opt. Lett. 34, 3205 (2009)]. In order to design the low power consumption devices, we have calculated surface acoustic wave excitation, propagation and acousto-optic interaction in the domain inverted LiNbO3 superlattice using scalar approximation and FEM analysis. Results from both modeling techniques are in good agreement with the experiments, including direct measurement of the acoustic displacement using laser interferometry and acousto-optic performance.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smith, A. M. J. Koonen, H. Herrmann, and W. Sohler, Wavelength-selective device, Fiber Optic Communication (Springer-Verlag, Berlin, 2001), pp. 262–312.
  2. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
    [CrossRef]
  3. T. Xie, Z. Wang, and Y. Pan, “Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation,” Appl. Opt. 44(20), 4272–4280 (2005).
    [CrossRef] [PubMed]
  4. N. Gupta, and R. Dahmani, “Acousto-optic sensing and imaging for biomedical applications,” in Engineering in Medicine and Biology Society,1997. Proceedings of the 19th Annual International Conference of the IEEE, 1997), 702–703 vol.702.
  5. K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976).
    [CrossRef]
  6. D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
    [CrossRef]
  7. L. N. Binh and J. Livingstone, “A wide-band acoustooptic TE-TM mode converter using a doubly confined structure,” IEEE J. Quantum Electron. 16(9), 964–971 (1980).
    [CrossRef]
  8. H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
    [CrossRef]
  9. O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004).
    [CrossRef] [PubMed]
  10. T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).
  11. D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
    [CrossRef]
  12. D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009).
    [CrossRef] [PubMed]
  13. D. Morgan, Surface Acoustic Wave Filters With Application to Electronic Communications and Signal Processing, 2 ed. (Elsevier, Oxford, UK, 2007).
  14. H. Hayashi and Y. Fujii, “An efficient acousto-optic TE/M mode converter utilizing a doubly confined optical and acoustic waveguide structure,” J. Appl. Phys. 49(8), 4534–4539 (1978).
    [CrossRef]
  15. G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. C. W. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” in Ultrasonics Symposium,1990. Proceedings., IEEE 1990, 1990), 435–438 vol.431.
  16. H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, and P. G. R. Smith, “Broadband monolithic acousto-optic tunable filter,” Opt. Lett. 25(5), 305–307 (2000).
    [CrossRef]
  17. P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Opt. Commun. 132, 19 (1996).
    [CrossRef]

2009 (2)

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
[CrossRef]

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009).
[CrossRef] [PubMed]

2007 (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

2005 (1)

2004 (1)

O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).

1996 (2)

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Opt. Commun. 132, 19 (1996).
[CrossRef]

1992 (1)

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

1980 (1)

L. N. Binh and J. Livingstone, “A wide-band acoustooptic TE-TM mode converter using a doubly confined structure,” IEEE J. Quantum Electron. 16(9), 964–971 (1980).
[CrossRef]

1978 (1)

H. Hayashi and Y. Fujii, “An efficient acousto-optic TE/M mode converter utilizing a doubly confined optical and acoustic waveguide structure,” J. Appl. Phys. 49(8), 4534–4539 (1978).
[CrossRef]

1976 (1)

K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976).
[CrossRef]

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Bao, Z.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Baran, J. E.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Benchabane, S.

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009).
[CrossRef] [PubMed]

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
[CrossRef]

Binh, L. N.

L. N. Binh and J. Livingstone, “A wide-band acoustooptic TE-TM mode converter using a doubly confined structure,” IEEE J. Quantum Electron. 16(9), 964–971 (1980).
[CrossRef]

Chakravarthy, R. S.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Cretin, B.

P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Opt. Commun. 132, 19 (1996).
[CrossRef]

d'Alessandro, A.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Fritz, D. J.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Fujii, Y.

H. Hayashi and Y. Fujii, “An efficient acousto-optic TE/M mode converter utilizing a doubly confined optical and acoustic waveguide structure,” J. Appl. Phys. 49(8), 4534–4539 (1978).
[CrossRef]

Gnewuch, H.

Hayashi, H.

H. Hayashi and Y. Fujii, “An efficient acousto-optic TE/M mode converter utilizing a doubly confined optical and acoustic waveguide structure,” J. Appl. Phys. 49(8), 4534–4539 (1978).
[CrossRef]

Herrmann, H.

O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004).
[CrossRef] [PubMed]

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Higuchi, K.

K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976).
[CrossRef]

Huang, S. H.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Hwang, S. M.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Jackel, J. L.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Janner, D.

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009).
[CrossRef] [PubMed]

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
[CrossRef]

Li, K. D.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Livingstone, J.

L. N. Binh and J. Livingstone, “A wide-band acoustooptic TE-TM mode converter using a doubly confined structure,” IEEE J. Quantum Electron. 16(9), 964–971 (1980).
[CrossRef]

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Muller-Reich, P.

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Nakazawa, T.

T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).

Orta, R.

O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004).
[CrossRef] [PubMed]

Pan, Y.

Pannell, C. N.

Peverini, O. A.

O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004).
[CrossRef] [PubMed]

Pruneri, V.

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
[CrossRef]

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009).
[CrossRef] [PubMed]

Reimann, V.

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Ricken, R.

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Ross, G. W.

Seibert, H.

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Seino, M.

T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Shibayama, K.

K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976).
[CrossRef]

Smith, D. A.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Smith, P. G. R.

Sohler, W.

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Taniguchi, S.

T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).

Vairac, P.

P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Opt. Commun. 132, 19 (1996).
[CrossRef]

Wang, Z.

Willner, A. E.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Xie, T.

Yamanouchi, K.

K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976).
[CrossRef]

Yudistira, D.

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009).
[CrossRef] [PubMed]

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
[CrossRef]

Zayer, N. K.

Zou, X. Y.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976).
[CrossRef]

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009).
[CrossRef]

Electron. Lett. (1)

H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992).
[CrossRef]

Fujitsu Sci. Tech. J. (1)

T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).

IEEE J. Quantum Electron. (1)

L. N. Binh and J. Livingstone, “A wide-band acoustooptic TE-TM mode converter using a doubly confined structure,” IEEE J. Quantum Electron. 16(9), 964–971 (1980).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

H. Hayashi and Y. Fujii, “An efficient acousto-optic TE/M mode converter utilizing a doubly confined optical and acoustic waveguide structure,” J. Appl. Phys. 49(8), 4534–4539 (1978).
[CrossRef]

J. Lightwave Technol. (1)

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[CrossRef]

Opt. Commun. (1)

P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Opt. Commun. 132, 19 (1996).
[CrossRef]

Opt. Lett. (2)

Other (4)

G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. C. W. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” in Ultrasonics Symposium,1990. Proceedings., IEEE 1990, 1990), 435–438 vol.431.

M. K. Smith, A. M. J. Koonen, H. Herrmann, and W. Sohler, Wavelength-selective device, Fiber Optic Communication (Springer-Verlag, Berlin, 2001), pp. 262–312.

N. Gupta, and R. Dahmani, “Acousto-optic sensing and imaging for biomedical applications,” in Engineering in Medicine and Biology Society,1997. Proceedings of the 19th Annual International Conference of the IEEE, 1997), 702–703 vol.702.

D. Morgan, Surface Acoustic Wave Filters With Application to Electronic Communications and Signal Processing, 2 ed. (Elsevier, Oxford, UK, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the proposed ASL transducer with coplanar electrodes.

Fig. 2
Fig. 2

Simplified 2D geometry for the proposed ASL transducer.

Fig. 3
Fig. 3

Full 3D anisotropic and piezoelectric unit cell of the ASL transducer.

Fig. 4
Fig. 4

Normalized modal velocity as a function of electrode’s width (W) on a 20-μm period ASL transducer calculated with scalar approximation (solid line) and FEM simulation (triangles), respectively. (Rectangulars) refer to measurement results.

Fig. 5
Fig. 5

Mode profiles of the ASL transducer with W = GE = 60 μm calculated with scalar approximation ((a) and (b)), and FEM ((c) and (d)), respectively.

Fig. 6
Fig. 6

Profile of the fundamental SAW mode excited at frequency 189.8 MHz detected using laser-probing technique on the ASL transducer with W = GE = 60 μm. The inset shows the acoustic beam profile across the electrodes.

Fig. 7
Fig. 7

Calculated total static capacitance (CT) (left) of the coplanar electrodes on ZX-cut LiNbO3 and the full-width-half-maximum (FWHM) of the acoustic (right) beam as a function of electrode’s gap.

Fig. 8
Fig. 8

Calculated AO coupling coefficient as the electrode width varied from 40 to 140 μm, while keeping GE fixed at 20μm.

Fig. 9
Fig. 9

Power conversion efficiency versus RF power. Dashed line are the fitting after Eq. (7).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2 Ψ s(f) x 2 + 2 Ψ s(f) y 2 + ( 2 π f 0 v ( y ) ) 2 Ψ s(f) = 0 ,
v ( y ) = { v f , y < 0 , v s , 0 < y < y 1 , v f , y 3 < y ,
Ψ ( x , y ) = W ( y ) exp ( j β x ) .
Ψ s = Ψ f   and   Ψ s y = Ψ f y ,
T I = e ˜ k I ( x ) E k + c I J E S J D i = ε i k S E k + e ˜ i J ( x ) S J T = ρ ω 2 u,
f ( x ) = { + 1 in positive domain 0 x < a 1 in negative domain a x < Λ .
P y ( L ) P z ( 0 ) = sin 2 κ L i ,
κ 2 = π 2 2 λ 0 2 M P a A ,
M = N M 3 N E 3 p 41 2 ρ v R 3 .
G a = π 2 K 2 C T N f 0 ,

Metrics