Abstract

We describe an optically pumped 87Rb magnetometer with 5 fT/Hz1/2 sensitivity when operated in the spin-exchange relaxation free (SERF) regime. The magnetometer uses a microfabricated vapor cell consisting of a cavity etched in a 1 mm thick silicon wafer with anodically bonded Pyrex windows. The measurement volume of the magnetometer is 1 mm3, defined by the overlap region of a circularly polarized pump laser and a linearly polarized probe laser, both operated near 795 nm. Sensitivity limitations unique to the use of microfabricated cells are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [CrossRef]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
    [CrossRef] [PubMed]
  3. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
    [CrossRef]
  4. D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
    [CrossRef]
  5. W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
    [CrossRef]
  6. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
    [CrossRef] [PubMed]
  7. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
    [CrossRef]
  8. M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
    [CrossRef] [PubMed]
  9. K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19(3), S160–S171 (2006).
    [CrossRef]
  10. S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
    [CrossRef]
  11. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
    [CrossRef]
  12. J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
    [CrossRef]
  13. W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
    [CrossRef]
  14. S. K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
    [CrossRef]
  15. D. Robbes, “Highly sensitive magnetometers: a review,” Sens. Actuators A Phys. 129(1-2), 86–93 (2006).
    [CrossRef]
  16. G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
    [CrossRef]
  17. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
    [CrossRef] [PubMed]
  18. T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
    [CrossRef]
  19. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
    [CrossRef]
  20. J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A photonic atomic magnetometer,” in preparation.

2010 (2)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[CrossRef]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

2009 (1)

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

2008 (3)

S. K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

2007 (3)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
[CrossRef]

T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[CrossRef]

2006 (2)

D. Robbes, “Highly sensitive magnetometers: a review,” Sens. Actuators A Phys. 129(1-2), 86–93 (2006).
[CrossRef]

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19(3), S160–S171 (2006).
[CrossRef]

2005 (1)

2004 (1)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

2001 (1)

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

1973 (1)

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[CrossRef]

1969 (2)

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[CrossRef]

G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[CrossRef]

Acosta, V. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Bechstein, S.

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

Braginski, A. I.

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19(3), S160–S171 (2006).
[CrossRef]

Budker, D.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

Cohen-Tannoudji, C.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[CrossRef]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[CrossRef]

Drung, D.

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

Dupont-Roc, J.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[CrossRef]

Franke, K. P.

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

Gerginov, V.

Griffith, W. C.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

Happer, W.

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[CrossRef]

Haroche, S.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[CrossRef]

Hollberg, L.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

Jimenez-Martinez, R.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

Kitching, J.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A photonic atomic magnetometer,” in preparation.

Knappe, S.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A photonic atomic magnetometer,” in preparation.

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[CrossRef]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Kosch, O.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

Lee, S. K.

S. K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[CrossRef]

T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[CrossRef]

Liew, L. A.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[CrossRef]

Michalak, D. J.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

Moreland, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

Pines, A.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

Pomerantz, D. I.

G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[CrossRef]

Preusser, J.

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A photonic atomic magnetometer,” in preparation.

Robbes, D.

D. Robbes, “Highly sensitive magnetometers: a review,” Sens. Actuators A Phys. 129(1-2), 86–93 (2006).
[CrossRef]

Robinson, H. G.

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

Romalis, M. V.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[CrossRef]

S. K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[CrossRef]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Sander, T. H.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

Scheiner, M.

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

Schurig, T.

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

Schwindt, P. D. D.

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

Shah, V.

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

Smullin, S. J.

T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[CrossRef]

Sternickel, K.

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19(3), S160–S171 (2006).
[CrossRef]

Tang, H.

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[CrossRef]

Trahms, L.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

Wallis, G.

G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[CrossRef]

Wiekhorst, F.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

Xu, S.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[CrossRef]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010).
[CrossRef]

W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009).
[CrossRef]

T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001).
[CrossRef]

J. Appl. Phys. (2)

G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[CrossRef]

S. K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[CrossRef]

Nat. Photonics (1)

V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007).
[CrossRef]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[CrossRef]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Lett. A (1)

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[CrossRef]

Phys. Rev. A (1)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

D. Robbes, “Highly sensitive magnetometers: a review,” Sens. Actuators A Phys. 129(1-2), 86–93 (2006).
[CrossRef]

Supercond. Sci. Technol. (1)

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19(3), S160–S171 (2006).
[CrossRef]

Other (1)

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A photonic atomic magnetometer,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Microfabricated vapor cells: (a) 3 mm x 2 mm x 1 mm single-chambered cell, (b) dual-chambered cell with two 3 mm x 2 mm x 1 mm cavities connected by a 1 mm x 0.1 mm passage.

Fig. 2
Fig. 2

Experimental setup. BS: beamsplitter, LP: linear polarizer, λ/4: quarter wave plate, PBS: polarizing beamsplitter, PD: silicon PIN photodiode.

Fig. 3
Fig. 3

Magnetic field sensitivity versus frequency in a dual-chambered microfabricated vapor cell. The red line indicates a sensitivity of 5 fT/Hz1/2. The dashed line shows the estimated sensitivity limit due to photon shot noise, and the dotted line shows an estimate of the atom (spin-projection) noise based on App. A in Ref. [19].

Tables (1)

Tables Icon

Table 1 Limits on magnetic sensitivity due to thermal magnetic noise in nearby materials

Metrics