Abstract

Terahertz spectroscopic properties in a one-dimensional superconductor-dielectric photonic crystal are theoretically investigated. Based on the calculated results, a terahertz multichanneled transmission filter can be achieved within the photonic passband. This structure possesses the comb-like resonant peaks in transmission spectrum at low temperature. The number of resonant peaks is directly related to the number of periods. The resonant peak height is lowered and broadened as the temperature increases. The dependence of the filling factor in the superconductor layer is also discussed. This filter containing no defect layer in structure is fundamentally different from the usual multichanneled filter based on a photonic crystal containing a photonic quantum well as a defect layer.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of effective plasma frequency in a superconducting photonic crystal

Chung-An Hu, Chien-Jang Wu, Tzong-Jer Yang, and Su-Lin Yang
J. Opt. Soc. Am. B 30(2) 366-369 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C.-J. Wu and Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromag. Res. 103, 169–184 (2010).
    [Crossref]
  2. S. J. Orfanidis, Electromagnetic Waves and Antennas ( www.ece.rutgers.edu/~orfandid/ewa , 2008).
  3. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
    [Crossref]
  4. Y. Zhang and B.-Y. Gu, “Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies,” Opt. Express 12(24), 5910–5915 (2004).
    [Crossref] [PubMed]
  5. C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
    [Crossref]
  6. S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
    [Crossref]
  7. J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
    [Crossref]
  8. J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).
  9. C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
    [Crossref]
  10. T. Bian and Y. Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik (Stuttg.) 120(14), 736–740 (2009).
  11. P. Li and Y. Liu, “Multichannel filtering properties of photonic crystals containing of single-negative materials,” Phys. Lett. A 373(21), 1870–1873 (2009).
    [Crossref]
  12. Y. Chen, “Independent modulation of defect modes in fractal photonic crystals with multiple defect layers,” J. Opt. Soc. Am. B 26(4), 854–857 (2009).
    [Crossref]
  13. J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283(13), 2647–2650 (2010) (and references therein).
    [Crossref]
  14. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
    [Crossref]
  15. H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70(8), 085109 (2004).
    [Crossref]
  16. C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
    [Crossref]
  17. C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).
    [Crossref]
  18. C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432(3-4), 133–139 (2005).
    [Crossref]
  19. O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
    [Crossref]
  20. A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
    [Crossref]
  21. C.-J. Wu, C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B 26(11), 2089–2094 (2009).
    [Crossref]
  22. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 6.
  23. M. G. Cottom, and D. R. Trilly, Introduction to Surface and Superlattice Excitations (University Press, Cambridge, 1989).
  24. T. van Duzer, and C. W. Turner, Principles of Superductive Devices and Circuits (Edward Arnold, London, 1981), Chap. 3.
  25. R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
    [Crossref]
  26. A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143–147 (2008).
  27. S. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express 13(11), 4113–4124 (2005).
    [Crossref] [PubMed]
  28. Y.-T. Fang and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Opt. Commun. 283(10), 2102–2108 (2010).
    [Crossref]
  29. C.-J. Wu, “Transmission and reflection in a periodic superconductor/dielectric film multilayer structure,” J. Electromagn. Waves Appl. 19(15), 1991–1996 (2005).
    [Crossref]

2010 (3)

C.-J. Wu and Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromag. Res. 103, 169–184 (2010).
[Crossref]

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283(13), 2647–2650 (2010) (and references therein).
[Crossref]

Y.-T. Fang and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Opt. Commun. 283(10), 2102–2108 (2010).
[Crossref]

2009 (6)

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

C.-J. Wu, C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B 26(11), 2089–2094 (2009).
[Crossref]

T. Bian and Y. Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik (Stuttg.) 120(14), 736–740 (2009).

P. Li and Y. Liu, “Multichannel filtering properties of photonic crystals containing of single-negative materials,” Phys. Lett. A 373(21), 1870–1873 (2009).
[Crossref]

Y. Chen, “Independent modulation of defect modes in fractal photonic crystals with multiple defect layers,” J. Opt. Soc. Am. B 26(4), 854–857 (2009).
[Crossref]

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

2008 (2)

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143–147 (2008).

2007 (1)

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

2006 (1)

O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
[Crossref]

2005 (6)

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432(3-4), 133–139 (2005).
[Crossref]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[Crossref]

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
[Crossref]

S. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express 13(11), 4113–4124 (2005).
[Crossref] [PubMed]

C.-J. Wu, “Transmission and reflection in a periodic superconductor/dielectric film multilayer structure,” J. Electromagn. Waves Appl. 19(15), 1991–1996 (2005).
[Crossref]

2004 (2)

2000 (2)

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
[Crossref]

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
[Crossref]

1999 (1)

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).
[Crossref]

1994 (1)

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Abdelmalek, F.

S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
[Crossref]

Aly, A. H.

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

Anlage, S. M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[Crossref]

Au Yeung, T. C.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
[Crossref]

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).
[Crossref]

Belhadj, W.

S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
[Crossref]

Berman, O. L.

O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
[Crossref]

Bian, T.

T. Bian and Y. Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik (Stuttg.) 120(14), 736–740 (2009).

Bouchriha, H.

S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
[Crossref]

Brorson, S. D.

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Buhleier, R.

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Cai, L. Z.

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

Chen, M.

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

Chen, M.-S.

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432(3-4), 133–139 (2005).
[Crossref]

Chen, Y.

Coalson, R. D.

O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
[Crossref]

Eiderman, S. L.

O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
[Crossref]

Elson, J. M.

Fang, Y.-T.

Y.-T. Fang and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Opt. Commun. 283(10), 2102–2108 (2010).
[Crossref]

Feng, C. S.

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

Feng, S.

Gu, B.-Y.

Habermeier, H.-U.

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Han, D.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Haxha, S.

S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
[Crossref]

Hsu, H.-T.

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

Hu, W.

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

Huang, C.

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

Huang, D.

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

Hwangbo, C. K.

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

Ivchenko, E. L.

A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143–147 (2008).

Kam, C. H.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
[Crossref]

Kuhl, J.

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Li, J.

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283(13), 2647–2650 (2010) (and references therein).
[Crossref]

Li, P.

P. Li and Y. Liu, “Multichannel filtering properties of photonic crystals containing of single-negative materials,” Phys. Lett. A 373(21), 1870–1873 (2009).
[Crossref]

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

Liang, Z.-C.

Y.-T. Fang and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Opt. Commun. 283(10), 2102–2108 (2010).
[Crossref]

Lim, T. K.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
[Crossref]

Liu, C. P.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Liu, C.-L.

Liu, J.

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

Liu, X.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Liu, Y.

P. Li and Y. Liu, “Multichannel filtering properties of photonic crystals containing of single-negative materials,” Phys. Lett. A 373(21), 1870–1873 (2009).
[Crossref]

Lozovik, Y. E.

O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
[Crossref]

Lozovik, Yu. E.

A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143–147 (2008).

Mei, L. M.

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

Orloff, N.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[Crossref]

Overfelt, P. L.

Poddubny, A. N.

A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143–147 (2008).

Qiao, F.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
[Crossref]

Raymond Ooi, C. H.

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
[Crossref]

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).
[Crossref]

Ricci, M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[Crossref]

Sun, J.

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

Takeda, H.

H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70(8), 085109 (2004).
[Crossref]

Trofimov, I. E.

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Wan, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
[Crossref]

Wang, Z.-H.

C.-J. Wu and Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromag. Res. 103, 169–184 (2010).
[Crossref]

White, J. O.

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Wu, C. J.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Wu, C.-J.

C.-J. Wu and Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromag. Res. 103, 169–184 (2010).
[Crossref]

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

C.-J. Wu, C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B 26(11), 2089–2094 (2009).
[Crossref]

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432(3-4), 133–139 (2005).
[Crossref]

C.-J. Wu, “Transmission and reflection in a periodic superconductor/dielectric film multilayer structure,” J. Electromagn. Waves Appl. 19(15), 1991–1996 (2005).
[Crossref]

Xu, C.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Xu, X.

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Yang, T.-J.

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

C.-J. Wu, C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Am. B 26(11), 2089–2094 (2009).
[Crossref]

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432(3-4), 133–139 (2005).
[Crossref]

Yang, X. L.

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

Yoshino, K.

H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70(8), 085109 (2004).
[Crossref]

Zakhidov, A. A.

H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70(8), 085109 (2004).
[Crossref]

Zhang, C.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
[Crossref]

Zhang, Y.

T. Bian and Y. Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik (Stuttg.) 120(14), 736–740 (2009).

Y. Zhang and B.-Y. Gu, “Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies,” Opt. Express 12(24), 5910–5915 (2004).
[Crossref] [PubMed]

Zi, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
[Crossref]

Appl. Phys. Lett. (2)

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77(23), 3698–3701 (2000).
[Crossref]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[Crossref]

IEE Proc., Optoelectron. (1)

S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals,” IEE Proc., Optoelectron. 152(4), 193–198 (2005).
[Crossref]

IET Optoelectron. (1)

J. Liu, J. Sun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structures,” IET Optoelectron. 2(3), 122–127 (2008).
[Crossref]

J. Appl. Phys. (1)

A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105(8), 083917 (2009).
[Crossref]

J. Electromagn. Waves Appl. (1)

C.-J. Wu, “Transmission and reflection in a periodic superconductor/dielectric film multilayer structure,” J. Electromagn. Waves Appl. 19(15), 1991–1996 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

Y.-T. Fang and Z.-C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Opt. Commun. 283(10), 2102–2108 (2010).
[Crossref]

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283(13), 2647–2650 (2010) (and references therein).
[Crossref]

C. Xu, X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Opt. Commun. 280(1), 221–224 (2007).
[Crossref]

Opt. Express (2)

Optik (Stuttg.) (2)

T. Bian and Y. Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik (Stuttg.) 120(14), 736–740 (2009).

J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures,” Optik (Stuttg.) 120(1), 35–39 (2009).

Phys. Lett. A (2)

P. Li and Y. Liu, “Multichannel filtering properties of photonic crystals containing of single-negative materials,” Phys. Lett. A 373(21), 1870–1873 (2009).
[Crossref]

C. H. Raymond Ooi and T. C. Au Yeung, “Polariton gap in a superconductor-dielectric superlattice,” Phys. Lett. A 259(5), 413–419 (1999).
[Crossref]

Phys. Rev. B (4)

H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70(8), 085109 (2004).
[Crossref]

C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61(9), 5920–5923 (2000).
[Crossref]

O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Phys. Rev. B 74(9), 092505 (2006).
[Crossref]

R. Buhleier, S. D. Brorson, I. E. Trofimov, J. O. White, H.-U. Habermeier, and J. Kuhl, “Anomalous behavior of the complex conductivity Y1-xPrxBa2Cu3O7 observed with THz spectroscopy,” Phys. Rev. B 50(13), 9672–9675 (1994).
[Crossref]

Physica C (1)

C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C 432(3-4), 133–139 (2005).
[Crossref]

Prog. Electromag. Res. (1)

C.-J. Wu and Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromag. Res. 103, 169–184 (2010).
[Crossref]

Solid State Commun. (2)

C. S. Feng, L. M. Mei, L. Z. Cai, P. Li, and X. L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants,” Solid State Commun. 135(5), 330–334 (2005).
[Crossref]

A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun. 146, 143–147 (2008).

Other (4)

S. J. Orfanidis, Electromagnetic Waves and Antennas ( www.ece.rutgers.edu/~orfandid/ewa , 2008).

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 6.

M. G. Cottom, and D. R. Trilly, Introduction to Surface and Superlattice Excitations (University Press, Cambridge, 1989).

T. van Duzer, and C. W. Turner, Principles of Superductive Devices and Circuits (Edward Arnold, London, 1981), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The structure of a one-dimensional superconducting photonic crystal denoted by (S/D) N immersed in free space. The wave is normally incident at the plane boundary, x = 0. The spatial periodicity is a = d 1 + d 2, where d 1 and d 2 are the thicknesses of S and D, respectively.
Fig. 2
Fig. 2 The calculated transmittance Γ (top), reflectance R (middle), and absorptance A (bottom) at temperature T = 4.2 K. The comb-like distributions of the resonant peaks in Γ and R are shown.
Fig. 3
Fig. 3 The resonant dips in R in the normalized frequency domain at different numbers of periods, N = 1, 2, 5, and 10, respectively. The number of resonant dips is equal to N-1 for a given N.
Fig. 4
Fig. 4 The calculated band diagram at T = 4.2 K. The solid curve corresponding to the real part of the Bloch wave vector indicates the passband, whereas the photonic band stop bands have the imaginary parts of the Bloch wave vector which are shown in the dash curve. P 1 marks the resonant point for N = 2.
Fig. 5
Fig. 5 The calculated transmittance Γ (top), reflectance R (middle), and absorptance A (bottom) at temperature T = 42 K. The comb-like shapes in Γ, R, and A shown in Fig. 2 are now suppressed and broadened.
Fig. 6
Fig. 6 The calculated transmittance at different thicknesses of the superconducting layer, d 1 = 0.3 (top), 0.5 (middle), and 0.7 μm (bottom), respectively. The resonant transmission peaks are negligibly small at d 1 = 0.7 μm.
Fig. 7
Fig. 7 The calculated normal-state transmittance Γ (top), reflectance R (middle), and absorptance A (bottom). The discrete comb-like behaviors in Γ, R, and A are no longer present.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n 1 = n 1 + i n 1 = ε 1 ,
ε 1 ( ω , T ) = ε 1 ( ω , T ) + i ε 1 ( ω , T ) = i σ 1 ( ω , T ) ω ε 0 ,
σ 1 ( ω , T ) = σ 1 ( ω , T ) + i σ 1 ( ω , T ) = ε 0 ω p 2 τ 1 i ω τ x n + i 1 ω μ 0 λ L 2 x s = ε 0 ω p 2 τ 1 + ω 2 τ 2 x n + i ( ε 0 ω p 2 τ 2 ω 1 + ω 2 τ 2 x n + 1 ω μ 0 λ L 2 x s ) ,
x s = 1 ( T / T c ) 4 ,
λ L ( T ) = λ 0 1 ( T / T c ) 4 ,
t = 1 M 11 , r = M 21 M 11 ,
M s y s = ( M 11 M 12 M 21 M 22 ) = D 0 1 M a N D 0 ,
M a = D 1 P 1 D 1 1 D 2 P 2 D 2 1 .
P = ( e i ϕ 0 0 e i ϕ ) ,
ϕ = k x d = 2 π d λ n , = 1 , 2 ,
D = ( 1 1 n n ) ,
A = 1 Γ R ,
cos ( K a ) = cos ( k 1 d 1 ) cos ( k 2 d 2 ) 1 2 ( k 1 k 2 + k 2 k 1 ) sin ( k 1 d 1 ) sin ( k 2 d 2 ) ,
R = | C | 2 | C | 2 + [ sin ( K a ) / sin ( K N a ) ] 2 ,
sin ( K N a ) = 0 K ( ω m ) N a = m π , m = 1 , 2 , ... N 1 ,
ε 1 ( ω ) = 1 ω p 2 ω 2 + i γ ω .

Metrics