Abstract

A photoelectric response of a Bi12SiO20 crystal grown in an argon atmosphere on a linearly polarized light (which is referred to as the linear photogalvanic effect) is reported for the first time in the nanosecond-time domain. Optimal geometry for detection of the photo-induced current concerning the orientation of the polarization state of the incident light in respect to the crystallographic axes of a sample was determined considering both the natural optical activity and light absorption of sillenite crystals. Spectral dependence of the photogalvanic current was measured in the visible part (410 – 610 nm) of the spectrum. Temporal shape of light-induced electric-current pulses observed at different experimental conditions is discussed. Obtained results are believed to show that sillenite crystals are very prospective for development of different ultra-fast optoelectronics devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, (Springer-Verlag, Berlin, Germany, 1991).
  2. Ph. Lemaire, and M. Georges, “Dynamic holographic interferometry: Devices and applications,” in Photorefractive Materials and Their Applications 3, P. Günter and J. P. Huignard, eds., (Springer, Berlin / Heidelberg, 2007), pp. 223–251.
  3. A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105(3), 031101 (2009).
    [CrossRef]
  4. V. I. Belinicher, B. I. Sturman, and V. K. Malinovsky, “Photogalvanic effect in crystals with a polar axis,” Zh. Eksp. Teor. Fiz. 73, 692–699 (1977).
  5. M. P. Petrov and A. I. Grachev, “Photogalvanic effects in bismuth sillicate (Bi12SiO20),” JETP Lett. 30, 15–18 (1979).
  6. M. P. Petrov and A. I. Grachev, “Bulk photogalvanic effects in bismuth sillicate (Bi12SiO20),” Sov. Phys. Solid State 22, 1671–1674 (1980).
  7. F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
    [CrossRef]
  8. D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80(6), 905–907 (2002).
    [CrossRef]
  9. F. Nastos and J. E. Sipe, “Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap,” Phys. Rev. B 74(3), 035201 (2006).
    [CrossRef]
  10. N. Laman, M. Bieler, and H. M. van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” J. Appl. Phys. 98(10), 103507 (2005).
    [CrossRef]
  11. M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100(8), 083710 (2006).
    [CrossRef]
  12. A. Feldman, W. S. Brower, and D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16(5), 201–202 (1970).
    [CrossRef]
  13. A. V. Andrianov, P. M. Valov, and I. D. Yaroshetskii, “Sign inversion of the linear photogalvanic effect in semiconductors,” JETP Lett. 31, 501–504 (1980).
  14. V. Tassev, G. Diankov, and M. Gospodinov, “Optical activity of doped and codoped Bi12SiO20 crystal,” J. Opt. Soc. Am. B 14(7), 1761–1764 (1997).
    [CrossRef]
  15. A. I. Grachev, M. P. Petrov, and M. V. Krasin'kova, “Photogalvanic active centers in Bi12SiO20 crystals,” Sov. Phys. Solid State 28, 1530–1532 (1986).
  16. D. H. Auston, A. M. Glass, and A. A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett. 28(14), 897–900 (1972).
    [CrossRef]
  17. A. I. Grachev and A. A. Kamshilin, “Electric polarization induced by optical orientation of dipolar centers in non-polar piezoelectrics,” Opt. Express 13(21), 8565–8570 (2005).
    [CrossRef] [PubMed]
  18. A. I. Grachev, E. Nippolainen, and A. A. Kamshilin, “Experimental observation of optical orientation of dipolar centers,” Opt. Express 15(18), 11500–11506 (2007).
    [CrossRef] [PubMed]
  19. A. I. Grachev, “Spectrum of linear photogalvanic effect in reduced Bi12SiO20,” Sov. Phys. Solid State 29, 2519–2520 (1987).
  20. H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
    [CrossRef]
  21. A. I. Grachev and M. V. Krasin'kova, “Steady-state surface-barrier photo-EMF in sillenite crystals,” Sov. Phys. Tech. Phys. 53, 1410–1411 (1983).
  22. J. M. C. Jonathan, G. Roosen, and Ph. Roussignol, “Time-resolved buildup of a photorefractive grating induced in Bi(12)SiO(20) by picosecond light pulses,” Opt. Lett. 13(3), 224–226 (1988).
    [CrossRef] [PubMed]
  23. G. Lessaux, G. Roosen, and A. Brun, “Observation and analysis of the fast photorefractive process in BSO,” Opt. Commun. 56(6), 374–378 (1986).
    [CrossRef]
  24. A. L. Khromov, A. A. Kamshilin, and M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77(2-3), 139–143 (1990).
    [CrossRef]

2009 (1)

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105(3), 031101 (2009).
[CrossRef]

2007 (1)

2006 (2)

M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100(8), 083710 (2006).
[CrossRef]

F. Nastos and J. E. Sipe, “Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap,” Phys. Rev. B 74(3), 035201 (2006).
[CrossRef]

2005 (2)

N. Laman, M. Bieler, and H. M. van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” J. Appl. Phys. 98(10), 103507 (2005).
[CrossRef]

A. I. Grachev and A. A. Kamshilin, “Electric polarization induced by optical orientation of dipolar centers in non-polar piezoelectrics,” Opt. Express 13(21), 8565–8570 (2005).
[CrossRef] [PubMed]

2002 (1)

D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80(6), 905–907 (2002).
[CrossRef]

2001 (1)

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

1997 (2)

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

V. Tassev, G. Diankov, and M. Gospodinov, “Optical activity of doped and codoped Bi12SiO20 crystal,” J. Opt. Soc. Am. B 14(7), 1761–1764 (1997).
[CrossRef]

1990 (1)

A. L. Khromov, A. A. Kamshilin, and M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77(2-3), 139–143 (1990).
[CrossRef]

1988 (1)

1987 (1)

A. I. Grachev, “Spectrum of linear photogalvanic effect in reduced Bi12SiO20,” Sov. Phys. Solid State 29, 2519–2520 (1987).

1986 (2)

A. I. Grachev, M. P. Petrov, and M. V. Krasin'kova, “Photogalvanic active centers in Bi12SiO20 crystals,” Sov. Phys. Solid State 28, 1530–1532 (1986).

G. Lessaux, G. Roosen, and A. Brun, “Observation and analysis of the fast photorefractive process in BSO,” Opt. Commun. 56(6), 374–378 (1986).
[CrossRef]

1983 (1)

A. I. Grachev and M. V. Krasin'kova, “Steady-state surface-barrier photo-EMF in sillenite crystals,” Sov. Phys. Tech. Phys. 53, 1410–1411 (1983).

1980 (2)

A. V. Andrianov, P. M. Valov, and I. D. Yaroshetskii, “Sign inversion of the linear photogalvanic effect in semiconductors,” JETP Lett. 31, 501–504 (1980).

M. P. Petrov and A. I. Grachev, “Bulk photogalvanic effects in bismuth sillicate (Bi12SiO20),” Sov. Phys. Solid State 22, 1671–1674 (1980).

1979 (1)

M. P. Petrov and A. I. Grachev, “Photogalvanic effects in bismuth sillicate (Bi12SiO20),” JETP Lett. 30, 15–18 (1979).

1977 (1)

V. I. Belinicher, B. I. Sturman, and V. K. Malinovsky, “Photogalvanic effect in crystals with a polar axis,” Zh. Eksp. Teor. Fiz. 73, 692–699 (1977).

1972 (1)

D. H. Auston, A. M. Glass, and A. A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett. 28(14), 897–900 (1972).
[CrossRef]

1970 (1)

A. Feldman, W. S. Brower, and D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16(5), 201–202 (1970).
[CrossRef]

Andrianov, A. V.

A. V. Andrianov, P. M. Valov, and I. D. Yaroshetskii, “Sign inversion of the linear photogalvanic effect in semiconductors,” JETP Lett. 31, 501–504 (1980).

Atanasov, R.

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

Auston, D. H.

D. H. Auston, A. M. Glass, and A. A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett. 28(14), 897–900 (1972).
[CrossRef]

Ballman, A. A.

D. H. Auston, A. M. Glass, and A. A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett. 28(14), 897–900 (1972).
[CrossRef]

Belinicher, V. I.

V. I. Belinicher, B. I. Sturman, and V. K. Malinovsky, “Photogalvanic effect in crystals with a polar axis,” Zh. Eksp. Teor. Fiz. 73, 692–699 (1977).

Bieler, M.

M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100(8), 083710 (2006).
[CrossRef]

N. Laman, M. Bieler, and H. M. van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” J. Appl. Phys. 98(10), 103507 (2005).
[CrossRef]

Brower, W. S.

A. Feldman, W. S. Brower, and D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16(5), 201–202 (1970).
[CrossRef]

Brun, A.

G. Lessaux, G. Roosen, and A. Brun, “Observation and analysis of the fast photorefractive process in BSO,” Opt. Commun. 56(6), 374–378 (1986).
[CrossRef]

Buse, K.

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

Côté, D.

D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80(6), 905–907 (2002).
[CrossRef]

Diankov, G.

Feldman, A.

A. Feldman, W. S. Brower, and D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16(5), 201–202 (1970).
[CrossRef]

Garcia, R. R.

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

Glass, A. M.

D. H. Auston, A. M. Glass, and A. A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett. 28(14), 897–900 (1972).
[CrossRef]

Gospodinov, M.

Grachev, A. I.

A. I. Grachev, E. Nippolainen, and A. A. Kamshilin, “Experimental observation of optical orientation of dipolar centers,” Opt. Express 15(18), 11500–11506 (2007).
[CrossRef] [PubMed]

A. I. Grachev and A. A. Kamshilin, “Electric polarization induced by optical orientation of dipolar centers in non-polar piezoelectrics,” Opt. Express 13(21), 8565–8570 (2005).
[CrossRef] [PubMed]

A. I. Grachev, “Spectrum of linear photogalvanic effect in reduced Bi12SiO20,” Sov. Phys. Solid State 29, 2519–2520 (1987).

A. I. Grachev, M. P. Petrov, and M. V. Krasin'kova, “Photogalvanic active centers in Bi12SiO20 crystals,” Sov. Phys. Solid State 28, 1530–1532 (1986).

A. I. Grachev and M. V. Krasin'kova, “Steady-state surface-barrier photo-EMF in sillenite crystals,” Sov. Phys. Tech. Phys. 53, 1410–1411 (1983).

M. P. Petrov and A. I. Grachev, “Bulk photogalvanic effects in bismuth sillicate (Bi12SiO20),” Sov. Phys. Solid State 22, 1671–1674 (1980).

M. P. Petrov and A. I. Grachev, “Photogalvanic effects in bismuth sillicate (Bi12SiO20),” JETP Lett. 30, 15–18 (1979).

Haché, F.

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

Hesse, H.

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

Horowitz, D.

A. Feldman, W. S. Brower, and D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16(5), 201–202 (1970).
[CrossRef]

Hughes, J. L. P.

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

Jonathan, J. M. C.

Kamshilin, A. A.

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105(3), 031101 (2009).
[CrossRef]

A. I. Grachev, E. Nippolainen, and A. A. Kamshilin, “Experimental observation of optical orientation of dipolar centers,” Opt. Express 15(18), 11500–11506 (2007).
[CrossRef] [PubMed]

A. I. Grachev and A. A. Kamshilin, “Electric polarization induced by optical orientation of dipolar centers in non-polar piezoelectrics,” Opt. Express 13(21), 8565–8570 (2005).
[CrossRef] [PubMed]

A. L. Khromov, A. A. Kamshilin, and M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77(2-3), 139–143 (1990).
[CrossRef]

Khromov, A. L.

A. L. Khromov, A. A. Kamshilin, and M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77(2-3), 139–143 (1990).
[CrossRef]

Kostoulas, Y.

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

Krasin'kova, M. V.

A. I. Grachev, M. P. Petrov, and M. V. Krasin'kova, “Photogalvanic active centers in Bi12SiO20 crystals,” Sov. Phys. Solid State 28, 1530–1532 (1986).

A. I. Grachev and M. V. Krasin'kova, “Steady-state surface-barrier photo-EMF in sillenite crystals,” Sov. Phys. Tech. Phys. 53, 1410–1411 (1983).

Krätzig, E.

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

Kulchin, Y. N.

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105(3), 031101 (2009).
[CrossRef]

Laman, N.

N. Laman, M. Bieler, and H. M. van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” J. Appl. Phys. 98(10), 103507 (2005).
[CrossRef]

D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80(6), 905–907 (2002).
[CrossRef]

Lessaux, G.

G. Lessaux, G. Roosen, and A. Brun, “Observation and analysis of the fast photorefractive process in BSO,” Opt. Commun. 56(6), 374–378 (1986).
[CrossRef]

Malinovsky, V. K.

V. I. Belinicher, B. I. Sturman, and V. K. Malinovsky, “Photogalvanic effect in crystals with a polar axis,” Zh. Eksp. Teor. Fiz. 73, 692–699 (1977).

Nastos, F.

F. Nastos and J. E. Sipe, “Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap,” Phys. Rev. B 74(3), 035201 (2006).
[CrossRef]

Nippolainen, E.

Petrov, M. P.

A. L. Khromov, A. A. Kamshilin, and M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77(2-3), 139–143 (1990).
[CrossRef]

A. I. Grachev, M. P. Petrov, and M. V. Krasin'kova, “Photogalvanic active centers in Bi12SiO20 crystals,” Sov. Phys. Solid State 28, 1530–1532 (1986).

M. P. Petrov and A. I. Grachev, “Bulk photogalvanic effects in bismuth sillicate (Bi12SiO20),” Sov. Phys. Solid State 22, 1671–1674 (1980).

M. P. Petrov and A. I. Grachev, “Photogalvanic effects in bismuth sillicate (Bi12SiO20),” JETP Lett. 30, 15–18 (1979).

Pierz, K.

M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100(8), 083710 (2006).
[CrossRef]

Romashko, R. V.

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105(3), 031101 (2009).
[CrossRef]

Roosen, G.

Roussignol, Ph.

Siegner, U.

M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100(8), 083710 (2006).
[CrossRef]

Sipe, J. E.

F. Nastos and J. E. Sipe, “Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap,” Phys. Rev. B 74(3), 035201 (2006).
[CrossRef]

Sturman, B. I.

V. I. Belinicher, B. I. Sturman, and V. K. Malinovsky, “Photogalvanic effect in crystals with a polar axis,” Zh. Eksp. Teor. Fiz. 73, 692–699 (1977).

Tassev, V.

Valov, P. M.

A. V. Andrianov, P. M. Valov, and I. D. Yaroshetskii, “Sign inversion of the linear photogalvanic effect in semiconductors,” JETP Lett. 31, 501–504 (1980).

van Driel, H. M.

N. Laman, M. Bieler, and H. M. van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” J. Appl. Phys. 98(10), 103507 (2005).
[CrossRef]

D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80(6), 905–907 (2002).
[CrossRef]

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

Vogt, H.

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

Yaroshetskii, I. D.

A. V. Andrianov, P. M. Valov, and I. D. Yaroshetskii, “Sign inversion of the linear photogalvanic effect in semiconductors,” JETP Lett. 31, 501–504 (1980).

Appl. Phys. Lett. (2)

D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80(6), 905–907 (2002).
[CrossRef]

A. Feldman, W. S. Brower, and D. Horowitz, “Optical activity and Faraday rotation in bismuth oxide compounds,” Appl. Phys. Lett. 16(5), 201–202 (1970).
[CrossRef]

J. Appl. Phys. (4)

N. Laman, M. Bieler, and H. M. van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” J. Appl. Phys. 98(10), 103507 (2005).
[CrossRef]

M. Bieler, K. Pierz, and U. Siegner, “Simultaneous generation of shift and injection currents in (110)-grown GaAs/AlGaAs quantum wells,” J. Appl. Phys. 100(8), 083710 (2006).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105(3), 031101 (2009).
[CrossRef]

H. Vogt, K. Buse, H. Hesse, E. Krätzig, and R. R. Garcia, “Growth and holographic characterization of nonstoichiometric sillenite-type crystals,” J. Appl. Phys. 90, 3167–3173 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (2)

A. V. Andrianov, P. M. Valov, and I. D. Yaroshetskii, “Sign inversion of the linear photogalvanic effect in semiconductors,” JETP Lett. 31, 501–504 (1980).

M. P. Petrov and A. I. Grachev, “Photogalvanic effects in bismuth sillicate (Bi12SiO20),” JETP Lett. 30, 15–18 (1979).

Opt. Commun. (2)

G. Lessaux, G. Roosen, and A. Brun, “Observation and analysis of the fast photorefractive process in BSO,” Opt. Commun. 56(6), 374–378 (1986).
[CrossRef]

A. L. Khromov, A. A. Kamshilin, and M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77(2-3), 139–143 (1990).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

F. Nastos and J. E. Sipe, “Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap,” Phys. Rev. B 74(3), 035201 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

F. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78(2), 306–309 (1997).
[CrossRef]

D. H. Auston, A. M. Glass, and A. A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett. 28(14), 897–900 (1972).
[CrossRef]

Sov. Phys. Solid State (3)

A. I. Grachev, M. P. Petrov, and M. V. Krasin'kova, “Photogalvanic active centers in Bi12SiO20 crystals,” Sov. Phys. Solid State 28, 1530–1532 (1986).

M. P. Petrov and A. I. Grachev, “Bulk photogalvanic effects in bismuth sillicate (Bi12SiO20),” Sov. Phys. Solid State 22, 1671–1674 (1980).

A. I. Grachev, “Spectrum of linear photogalvanic effect in reduced Bi12SiO20,” Sov. Phys. Solid State 29, 2519–2520 (1987).

Sov. Phys. Tech. Phys. (1)

A. I. Grachev and M. V. Krasin'kova, “Steady-state surface-barrier photo-EMF in sillenite crystals,” Sov. Phys. Tech. Phys. 53, 1410–1411 (1983).

Zh. Eksp. Teor. Fiz. (1)

V. I. Belinicher, B. I. Sturman, and V. K. Malinovsky, “Photogalvanic effect in crystals with a polar axis,” Zh. Eksp. Teor. Fiz. 73, 692–699 (1977).

Other (2)

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, (Springer-Verlag, Berlin, Germany, 1991).

Ph. Lemaire, and M. Georges, “Dynamic holographic interferometry: Devices and applications,” in Photorefractive Materials and Their Applications 3, P. Günter and J. P. Huignard, eds., (Springer, Berlin / Heidelberg, 2007), pp. 223–251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Transverse geometry for observation of the linear photogalvanic effect in a sample of the sillenite crystal. Ch1 and Ch2 are two measuring channels of the oscilloscope.

Fig. 2
Fig. 2

Angle between the polarization plane of incident light and the axis [001] of the BSO sample with L = 1.9 mm for observation of the maximal LPGE current as a function of the light wavelength.

Fig. 3
Fig. 3

Spectral dependence of the MS factor for the BSO sample calculated considering wavelength-dependent optimal angle θ 0(λ) (solid line) and the mean θ 0 av = 22⁰ (squares).

Fig. 4
Fig. 4

Schematic view of the experimental setup for measurements of LPGE current induced by light pulse illumination: OPO is the optical parametric oscillator; BSO is a Bi12SiO20 crystal of (110) crystallographic cut.

Fig. 5
Fig. 5

Oscilloscope traces recorded when BSO sample was illuminated by linearly polarized light pulse at wavelengths of 520 nm (a, b) and 480 nm (c, d). The angle of the polarization plane in respect to the [001] axis was: (a) 14°; (b) 104°; (c) 13°; (d) 103°.

Fig. 6
Fig. 6

Oscilloscope traces recorded under sample illumination by light at wavelengths of 520 nm (a) and 480 nm (b) when the polarization angle corresponds to absence of LPGE current. The diameter of the illuminating beam is 2.9 mm (a) and 3.7 mm (b).

Fig. 7
Fig. 7

Response of the BSO sample on the linearly polarized light beam with the diameter of 13 mm which exceeds the inter-electrode distance of the sample. The polarization angle in respect to the axis [001] is (a) 20° and (b) 100°.

Fig. 8
Fig. 8

Amplitude of the generated electric signal as a function of the polarization angle θ measured at the wavelength of 532 nm. The signal is reduced to the equal pulse energy. Blue line is a theoretical curve from Eq. (5), and red squares are the experimental data. The diameter of the illuminating beam is 13 mm.

Fig. 9
Fig. 9

Oscilloscope traces recorded when the sample was illuminated by the circularly polarized light at the wavelength of 532 nm. The diameter of the illuminating beam is 13 mm.

Fig. 10
Fig. 10

Spectral dependence of the component β 14 of the photogalvanic tensor (a) and the Glass coefficient G (b) measured for the sample BSO-14.

Fig. 11
Fig. 11

Response of the BSO sample on the illumination at different wavelengths by linearly polarized light pulses at the polarization angle corresponding to the maximal negative electric current: (a) λ = 600 nm, E 0 = 0.31 mJ, θ 0 = 112°; (b) λ = 590 nm, E 0 = 0.39 mJ, θ 0 = 112°; (c) λ = 520 nm, E 0 = 0.68 mJ, θ 0 = 104°; and (d) λ = 480 nm, E 0 = 1.01 mJ, θ 0 = 103°. The diameter of the illuminating beam is 3 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

j i = β i j k A A ( q j q k + q j q k ) / 2 .
β = [ 0 0 0 β 14 0 0 0 0 0 0 β 14 0 0 0 0 0 0 β 14 ] .
I ( y , z ) = 4 E 0 ( λ ) π d 2 τ p e 4 ( y 2 + x 2 ) d 2 ,
d j 1 1 ¯ 0 = β 14 sin ( 2 θ + 2 ρ x ) I e f ( x , z ) .
J P G = β 14 E 0 ( λ ) τ p Q ( d , W , H ) [ α sin (2 θ ) + 2 ρ cos ( 2 θ ) α 2 + 4 ρ 2 α sin (2 θ + 2 ρ L ) + 2 ρ cos ( 2 θ + 2 ρ L ) α 2 + 4 ρ 2 e α L ] .
tan ( 2 θ 0 ) = α [ α cos (2 ρ L ) 2 ρ sin ( 2 ρ L ) ]exp ( - α L ) 2 ρ [ α sin (2 ρ L ) + 2 ρ cos ( 2 ρ L ) ]exp ( - α L ) .
M S = Q ( d , W , H ) [ α sin (2 θ ) + 2 ρ cos ( 2 θ ) α 2 + 4 ρ 2 α sin (2 θ + 2 ρ L ) + 2 ρ cos ( 2 θ + 2 ρ L ) α 2 + 4 ρ 2 e α L ] .

Metrics