Abstract

We present a continuous wave terahertz source based on intracavity difference frequency generation within a dual color vertical external cavity surface emitting laser. Using a nonlinear crystal with a surface emitting phase matching scheme allows for high conversion efficiencies. Due to the tunability of the dual mode spacing, the entire spectral range of the terahertz gap can be covered. The terahertz output scales quadratically with the intracavity intensity, potentially allowing for terahertz intensities in the range of 10s of milliwatts and beyond.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  2. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [CrossRef]
  3. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [CrossRef] [PubMed]
  4. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
    [CrossRef] [PubMed]
  5. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
    [CrossRef]
  6. A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005).
    [CrossRef] [PubMed]
  7. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  8. P. H. Siegel, “THz Instruments for Space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
    [CrossRef]
  9. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [CrossRef]
  10. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
    [CrossRef]
  11. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
    [CrossRef]
  12. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
    [CrossRef] [PubMed]
  13. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
    [CrossRef] [PubMed]
  14. W. C. Hurlbut, V. G. Kozlov, and K. L. Vodopyanov, “Difference frequency generation of THz waves inside a high-finesse ring-cavity OPO pumped by a fiber laser,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010.
  15. R. Sowade, I. Breunig, I. Cámara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express 17(25), 22303–22310 (2009).
    [CrossRef]
  16. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
    [CrossRef]
  17. J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007).
    [CrossRef]
  18. J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
    [CrossRef]
  19. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

2008 (2)

2007 (8)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

P. H. Siegel, “THz Instruments for Space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007).
[CrossRef]

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[CrossRef] [PubMed]

2005 (2)

T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[CrossRef] [PubMed]

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005).
[CrossRef] [PubMed]

2004 (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

1990 (1)

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[CrossRef]

Araki, T.

Avetisyan, Y.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Beck, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[CrossRef]

Bedford, R.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Beigang, R.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Blackshire, J. L.

Bohn, M. J.

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Breunig, I.

Buse, K.

Cámara Mayorga, I.

Cole, B. E.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005).
[CrossRef] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Dierolf, V.

Exter, M.

Faist, J.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[CrossRef]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

Fallahi, M.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Fan, L.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Fattinger, C.

Fischer, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[CrossRef]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

Fitzgerald, A. J.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005).
[CrossRef] [PubMed]

Grischkowsky, D.

Hader, J.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007).
[CrossRef]

Hayashi, S.

Hebling, J.

Hoffmann, M. C.

Hoyler, N.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

Jördens, C.

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[CrossRef]

Kawase, K.

Keiding, S.

Kiessling, J.

Koch, M.

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[CrossRef]

Koch, S. W.

J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

L'huillier, J. A.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Moloney, J. V.

J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Moodie, D. G.

Murray, J. T.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Nelson, K. A.

Ogawa, Y.

Otani, C.

Renaud, C. C.

Robertson, M. J.

Rouvalis, E.

Sakai, H.

Sawanaka, K.

Scalari, G.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[CrossRef]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

Seeds, A. J.

Shibuya, T.

Siegel, P. H.

P. H. Siegel, “THz Instruments for Space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
[CrossRef]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

Sowade, R.

Stoik, C. D.

Stolz, W.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Taday, P. F.

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005).
[CrossRef] [PubMed]

Taira, T.

Terazzi, R.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

Theuer, M.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Torosyan, G.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Tulea, C.

Walther, C.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Yasuda, T.

Yasui, T.

Yeh, K.-L.

Zakharian, A. R.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

P. H. Siegel, “THz Instruments for Space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Pharm. Sci. (1)

A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007).
[CrossRef]

Nat. Photonics (2)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Opt. Eng. (1)

C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008).
[CrossRef]

Opt. Express (4)

Other (1)

W. C. Hurlbut, V. G. Kozlov, and K. L. Vodopyanov, “Difference frequency generation of THz waves inside a high-finesse ring-cavity OPO pumped by a fiber laser,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a): Illustration of the setup: The pump laser is reflected by the mirror M3 and directed to the VECSEL chip. The cavity is formed by the curved mirror M1 and the flat mirror M2. A Brewster window (BW) and an etalon are placed within the resonator to ensure a linear polarized emission at two wavelengths. The two laser modes mix inside the nonlinear crystal (NLC) and THz radiation is emitted from the crystal surface, collimated by a cylindrical THz lens. (b): Photograph of the employed setup. The marked parts are 1) the semiconductor VECSEL device, 2) the etalon, 3) the BW 4) M1, 5) the NLC, 6) M2, 7) a cylindrical THz lens, 8) the head of the pump laser and 9) the illustrated circulating IR laser mode.

Fig. 2
Fig. 2

(a): Recorded spectrum at dual (2-color) wavelength emission of the VECSEL for two tilt angles of a 40 µm thick silica etalon Δf1 = 1.90 THz, Δf2 = 1.85 THz. (b) Spectrum with a different etalon that causes a difference frequency of Δf3 = 1 THz.

Fig. 3
Fig. 3

(a): Measured THz output power as function of the total intracavity power of both infrared modes. The THz frequency was 1 THz (triangles) and 1.9 THz (dots). The quadratic fit functions represent the expected behavior of the intracavity difference-frequency generation scheme [19].

Fig. 4
Fig. 4

Signal of the Michelson interferometer setup as function of the mirror position together with a fit for 1.9 THz.

Fig. 5
Fig. 5

Beam shape of the collimated THz radiation measured trough a 3 mm aperture before the Golay cell. Measured values for a scan along the x (a) and y (b) axis together with a Gaussian fit.

Metrics