Abstract

We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 and all articles in that issue (2001).
    [CrossRef]
  2. R. M. Hochstrasser, “Multidimensional ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14189 and all articles in that issue (2007).
    [CrossRef] [PubMed]
  3. S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009).
    [CrossRef]
  4. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
    [CrossRef] [PubMed]
  5. P. Hamm, and R. M. Hochstrasser, “Structure and dynamics of proteins and peptides: Femtosecond twodimensional infrared spectroscopy,” in Ultrafast Infrared and Raman Spectroscopy, M. D. Fayer, ed. (Marcel Dekker, New York, 2001), pp. 273–347.
  6. M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, 516–522 (2001).
    [CrossRef]
  7. N. H. Ge, and R. M. Hochstrasser, “Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY,” PhysChemComm 5, 17–26 (2002).
  8. S. Woutersen, and P. Hamm, “Nonlinear 2D vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14, R1035–R1062 (2002).
    [CrossRef]
  9. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [CrossRef]
  10. M. Cho, “Coherent two-dimensional optical spectroscopy,” Bull. Korean Chem. Soc. 27, 1940–1960 (2006).
    [CrossRef]
  11. J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
    [CrossRef]
  12. J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
    [CrossRef] [PubMed]
  13. I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
    [CrossRef] [PubMed]
  14. P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008).
    [CrossRef]
  15. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
    [CrossRef] [PubMed]
  16. Y. S. Kim, and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231–8251 (2009).
    [CrossRef] [PubMed]
  17. M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, Boca Raton, 2009).
    [CrossRef]
  18. S. H. Shim, and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [CrossRef] [PubMed]
  19. P. Hamm, and M. T. Zanni, Concepts and Methods of 2D Infrared Spectrsocopy (Cambridge University Press, Cambridge, 2011).
  20. E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
    [CrossRef] [PubMed]
  21. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
    [CrossRef] [PubMed]
  22. D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
    [CrossRef]
  23. W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
    [CrossRef]
  24. A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
    [CrossRef]
  25. P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [CrossRef] [PubMed]
  26. P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
    [CrossRef] [PubMed]
  27. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681 (2007).
    [CrossRef] [PubMed]
  28. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
    [CrossRef] [PubMed]
  29. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
    [CrossRef] [PubMed]
  30. W. Warren, and A. Zewail, “Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications,” J. Chem. Phys. 78, 2279 (1983).
    [CrossRef]
  31. J. Helbing, and P. Hamm, “A compact implementation of Fourier transform 2D-IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B. submitted.
  32. M. Bonmarin, and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
    [CrossRef] [PubMed]
  33. F. Dostal, “Resonant torsional oscillators - patent 3609485,” United States Patent (1969).

2009 (6)

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009).
[CrossRef]

Y. S. Kim, and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231–8251 (2009).
[CrossRef] [PubMed]

S. H. Shim, and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

M. Bonmarin, and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

2008 (3)

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008).
[CrossRef] [PubMed]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008).
[CrossRef]

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

2007 (7)

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
[CrossRef] [PubMed]

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

R. M. Hochstrasser, “Multidimensional ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14189 and all articles in that issue (2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681 (2007).
[CrossRef] [PubMed]

P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Bull. Korean Chem. Soc. 27, 1940–1960 (2006).
[CrossRef]

2003 (2)

P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

2002 (2)

N. H. Ge, and R. M. Hochstrasser, “Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY,” PhysChemComm 5, 17–26 (2002).

S. Woutersen, and P. Hamm, “Nonlinear 2D vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14, R1035–R1062 (2002).
[CrossRef]

2001 (2)

M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, 516–522 (2001).
[CrossRef]

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 and all articles in that issue (2001).
[CrossRef]

2000 (1)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[CrossRef] [PubMed]

1999 (2)

D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

1995 (1)

W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
[CrossRef]

1983 (1)

W. Warren, and A. Zewail, “Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications,” J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Albrecht, A.

A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Andresen, E. R.

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

Bonmarin, M.

M. Bonmarin, and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

Borgschulte, A.

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

Bredenbeck, J.

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008).
[CrossRef]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
[CrossRef] [PubMed]

Bristow, A. D.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Carlsson, C.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Bull. Korean Chem. Soc. 27, 1940–1960 (2006).
[CrossRef]

Chung, H. S.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Cundiff, S. T.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Dai, X.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Damrauer, N. H.

DeBoeij, W.

W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
[CrossRef]

DeFlores, L. P.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Faeder, S.

A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Fayer, M. D.

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef]

Finkelstein, I. J.

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

Ganim, Z.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Ge, N. H.

N. H. Ge, and R. M. Hochstrasser, “Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY,” PhysChemComm 5, 17–26 (2002).

Gremaud, R.

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

Grumstrup, E. M.

Hagen, K. R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Hamm, P.

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009).
[CrossRef]

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008).
[CrossRef]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
[CrossRef] [PubMed]

S. Woutersen, and P. Hamm, “Nonlinear 2D vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14, R1035–R1062 (2002).
[CrossRef]

J. Helbing, and P. Hamm, “A compact implementation of Fourier transform 2D-IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B. submitted.

Helbing, J.

M. Bonmarin, and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008).
[CrossRef]

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
[CrossRef] [PubMed]

J. Helbing, and P. Hamm, “A compact implementation of Fourier transform 2D-IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B. submitted.

Hochstrasser, R. M.

Y. S. Kim, and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231–8251 (2009).
[CrossRef] [PubMed]

R. M. Hochstrasser, “Multidimensional ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14189 and all articles in that issue (2007).
[CrossRef] [PubMed]

N. H. Ge, and R. M. Hochstrasser, “Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY,” PhysChemComm 5, 17–26 (2002).

M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, 516–522 (2001).
[CrossRef]

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 and all articles in that issue (2001).
[CrossRef]

Hybl, J.

A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Ishikawa, H.

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

Jimenez, R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

Jones, K. C.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Karaiskaj, D.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

Kim, S.

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

Kim, Y. S.

Y. S. Kim, and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231–8251 (2009).
[CrossRef] [PubMed]

Kolano, C.

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
[CrossRef] [PubMed]

Kwak, K.

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef]

Lewis, K. L. M.

Ling, Y. L.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Lott, G.

P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef] [PubMed]

Marcus, A.

P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef] [PubMed]

Montgomery, M. A.

Mukamel, S.

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009).
[CrossRef]

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 and all articles in that issue (2001).
[CrossRef]

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[CrossRef] [PubMed]

Myers, J. A.

Ogilvie, J. P.

Pshenichnikov, M.

W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
[CrossRef]

Ramirez-Cuesta, A. J.

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

Shim, S. H.

S. H. Shim, and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Shim, S.-H.

Smith, A. W.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Strasfeld, D. B.

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

Tan, H.

D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

Tanimura, Y.

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009).
[CrossRef]

Tekavec, P.

P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef] [PubMed]

Tekavec, P. F.

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Warren, W.

P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

W. Warren, and A. Zewail, “Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications,” J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Wiersma, D.

W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
[CrossRef]

Woutersen, S.

S. Woutersen, and P. Hamm, “Nonlinear 2D vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14, R1035–R1062 (2002).
[CrossRef]

Z¨uttel, A.

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

Zanni, M. T.

S. H. Shim, and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681 (2007).
[CrossRef] [PubMed]

M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, 516–522 (2001).
[CrossRef]

Zewail, A.

W. Warren, and A. Zewail, “Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications,” J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Zhang, T.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Zheng, J.

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef]

Acc. Chem. Res. (2)

J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007).
[CrossRef]

Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008).
[CrossRef] [PubMed]

Acc. Chem. Research (1)

S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009).
[CrossRef]

Annu. Rev. Phys. Chem. (3)

S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000).
[CrossRef] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008).
[CrossRef]

Bull. Korean Chem. Soc. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Bull. Korean Chem. Soc. 27, 1940–1960 (2006).
[CrossRef]

Chem. Phys. (1)

S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 and all articles in that issue (2001).
[CrossRef]

Chem. Phys. Lett. (1)

W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
[CrossRef]

ChemPhysChem (1)

J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007).
[CrossRef] [PubMed]

Chirality (1)

M. Bonmarin, and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009).
[CrossRef] [PubMed]

Curr. Opin. Struct. Biol. (1)

M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, 516–522 (2001).
[CrossRef]

J. Chem. Phys. (3)

A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).
[CrossRef]

P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[CrossRef] [PubMed]

W. Warren, and A. Zewail, “Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications,” J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Helbing, and P. Hamm, “A compact implementation of Fourier transform 2D-IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B. submitted.

J. Phys. Chem. A (2)

E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009).
[CrossRef] [PubMed]

D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999).
[CrossRef]

J. Phys. Chem. B (1)

Y. S. Kim, and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231–8251 (2009).
[CrossRef] [PubMed]

J. Phys. Condens. Matter (1)

S. Woutersen, and P. Hamm, “Nonlinear 2D vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14, R1035–R1062 (2002).
[CrossRef]

Opt. Express (2)

Phys. Chem. Chem. Phys. (2)

I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007).
[CrossRef] [PubMed]

S. H. Shim, and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

PhysChemComm (1)

N. H. Ge, and R. M. Hochstrasser, “Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY,” PhysChemComm 5, 17–26 (2002).

Proc. Natl. Acad. Sci. U.S.A. (1)

S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

R. M. Hochstrasser, “Multidimensional ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14189 and all articles in that issue (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009).
[CrossRef] [PubMed]

Science (1)

P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[CrossRef] [PubMed]

Other (4)

F. Dostal, “Resonant torsional oscillators - patent 3609485,” United States Patent (1969).

P. Hamm, and R. M. Hochstrasser, “Structure and dynamics of proteins and peptides: Femtosecond twodimensional infrared spectroscopy,” in Ultrafast Infrared and Raman Spectroscopy, M. D. Fayer, ed. (Marcel Dekker, New York, 2001), pp. 273–347.

P. Hamm, and M. T. Zanni, Concepts and Methods of 2D Infrared Spectrsocopy (Cambridge University Press, Cambridge, 2011).

M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, Boca Raton, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A pure π phase shift versus a quasi-phase shift achieved by a sub-cycle delay. (a) In the time domain, a pure π phase shift will move the carrier only but keeps the pulse envelope constant in time. A quasi-phase shift, in contrast, will move both the envelope and the carrier. (b) In the frequency domain, the spectral phase of a pure phase modulation is independent of the frequency (solid line). A quasi-phase shift will have a spectral phase that varies linearly with frequency (dotted line).

Fig. 2
Fig. 2

A schematic drawing of the box-CARS 2D IR setup. An IR pulse is split into four pulses E1, E2, E3 and ELO. Pulses 1 and 2 are transmitted together through one modulator before they are split, while pulse 3 is modulated independently. The three incident pulses generate the signal field E2DIR, which is heterodyned with the local oscillator by spectral interferometry. The timing notation is defined at the bottom of the figure.

Fig. 3
Fig. 3

Comparison of exact and first-order sequences. (a) The positions of the pulses in time for the four measurements. (b) The spectral phases of the four measurements exemplified by the scattering term E1E3. (c) Spectral responses. A chopper measures the 2D IR signal only for every other laser shots, hence the overall signal is half. With quasi-phase-cycling, every laser shot is used, so the signal is larger, but a tiny frequency dependence of the response is present (see Eqs. (11) and (12)). The exact sequence will completely eliminate scattering (see Eq. (9)), while scattering will rise linearly off the center frequency for the the first-order sequence (see Eq. (10)).

Fig. 4
Fig. 4

(a) An optical window mounted on an electromagnetically driven torsional oscillator for use as a pulse delay modulator. (b) The upper panel shows the oscillation of modulator 1,2, the lower panel shows the modulation of modulator 3. For the exact sequence (solid line) the modulator has a ±π* amplitude at a quarter of the laser repetition rate. For the first-order sequence (dashed line), the amplitude is π* with half the laser repetition rate.

Fig. 5
Fig. 5

Experimental scattering elimination using the first-order and the exact sequences. (Top) ) Original scattering signal, (middle) suppression using the first-order sequence; the 10x zoom (thin line) illustrates that the elimination is complete only for the center frequency (around 1640 cm−1). (Bottom) Exact sequence, which reduces the scattering by a factor 400.

Tables (1)

Tables Icon

Table 1 The states of the two modulators for the four measurements of the phase cycle (row 2–3) and the sign (row 4) with which they contribute to the final signal. For the fourth measurement, two different phase-shifts are introduced for ϕ3, leading to the first-order (ϕ3 = π*) and the exact (ϕ3 = −π*) sequence, respectively. The first column lists all possible combinations of fields that may interfere on the detector, the second column the overall phase of this term which is then spelled out in column (3–7) for each of the four measurements of the cycle. The two right-most columns list the final signal for the first-order and the exact sequence, respectively. The asterisk means that the result is not exact when quasi-phase shifts are used, i.e. 0* refers to Eq. (10) and 1* to Eq. (11) or Eq. (12), respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E ˜ ( t ) e i ( ω 0 t + ϕ ) ,
E ( ω ) = E ˜ ( ω ) e i ( ω t 0 + ϕ ) ,
| E i ( ω ) + E j ( ω ) | 2 = E ˜ i 2 ( ω ) + E ˜ j 2 ( ω ) + 2 E ˜ i ( ω ) E ˜ j ( ω ) cos ( ω Δ t + Δ ϕ )
S ij ( Δ t , Δ ϕ ) E ˜ i ( ω ) E ˜ j ( ω ) cos ( ω Δ t + Δ ϕ )
ϕ 2 DIR = ± ϕ 1 ϕ 2 + ϕ 3 ,
S ˜ 2 DIR , LO ( Δ t ) = S 2 DIR , LO ( Δ t , Δ ϕ = 0 ) S 2 DIR , LO ( Δ t , Δ ϕ = π ) = 2 E ˜ 2 DIR ( ω ) E ˜ LO ( ω ) cos ( ω Δ t )
S ij ( Δ t + dt ) = E ˜ i ( ω ) E ˜ j ( ω ) cos ( ω ( Δ t + δ t ) ) .
S ˜ 2 DIR , LO ( Δ t ) = S 2 DIR , LO ( Δ t ) S 2 DIR , LO ( Δ t + π / ω 0 ) = 2 E ˜ 2 DIR ( ω ) E ˜ LO ( ω ) sin ( ω Δ t + π ω 2 ω 0 ) sin ( ω π 2 ω 0 ) .
S ˜ 13 ( Δ t ) = + S 13 ( Δ t , Δ ϕ * = + π * ) S 13 ( Δ t , Δ ϕ * = 0 ) + S 13 ( Δ t , Δ ϕ * = 0 ) S 13 ( Δ t , Δ ϕ * = + π * ) = 0
S ˜ 13 ( Δ t ) = + S 13 ( Δ t , Δ ϕ * = + π * ) S 13 ( Δ t , Δ ϕ * = 0 ) + S 13 ( Δ t , Δ ϕ * = 0 ) S 13 ( Δ t , Δ ϕ * = π * ) = 2 E ˜ 1 ( ω ) E ˜ 3 ( ω ) sin ( ω Δ t ) sin ( ω π ω 0 )
S ˜ 2 DIR , LO ( Δ t ) = + S 2 DIR , LO ( Δ t , Δ ϕ * = 0 ) S 2 DIR , LO ( Δ t , Δ ϕ * = + π * ) + S 2 DIR , LO ( Δ t , Δ ϕ * = 0 ) S 2 DIR , LO ( Δ t , Δ ϕ * = π * ) = 4 E ˜ 2 DIR ( ω ) E ˜ LO ( ω ) cos ( ω Δ t ) sin 2 ( π ω 2 ω 0 )
S ˜ 2 D I R , L O ( Δ t ) = + S 2 D I R , L O ( Δ t , Δ ϕ * = 0 ) S 2 D I R , L O ( Δ t , Δ ϕ * = + π * ) + S 2 D I R , L O ( Δ t , Δ ϕ * = 0 ) S 2 D I R , L O ( Δ t , Δ ϕ * = + π * ) = 4 E ˜ 2 D I R ( ω ) E ˜ L O ( ω ) sin ( ω Δ t + π ω 2 ω 0 ) sin ( π ω 2 ω 0 )

Metrics