Abstract

In this paper, novel ultra compact and ultra wide band couplers between silicon and plasmonic slot waveguides are analyzed, characterized, and fabricated. This novel coupling scheme is fabricated using silicon on insulator platform. An orthogonal junction configuration is designed to provide non-resonate wideband coupling from a 400 nm silicon waveguide to 50-nm wide air-filled plasmonic slot. The 1 μm wide full-width half-max coupling spectrum can theoretically reach high peak of 70% coupling to the plasmonic slot centered around the 1550 nm wavelength. This center wavelength can be controlled by varying the silicon waveguide width. Theoretical analysis is in good agreement with FDTD simulated results, and experimental results. The fabrication procedure is also presented and discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. M. A. Swillam and A. S. Helmy, “Analysis and applications of 3D rectangular metallic waveguides,” Opt. Express 18(19), 19831–19843 (2010).
    [CrossRef] [PubMed]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  4. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [CrossRef] [PubMed]
  5. P. Berini, “Bulk and surface sensitivity of surface plasmon waveguide,” N. J. Phys. 10(10), 105010 (2008).
    [CrossRef]
  6. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [CrossRef]
  7. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
    [CrossRef]
  8. E. Feigenbaum and M. Orenstein, “Modeling of Complementary (Void) Plasmon Waveguiding,” J. Lightwave Technol. 25(9), 2547–2562 (2007).
    [CrossRef]
  9. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  10. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
    [CrossRef] [PubMed]
  11. Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
    [CrossRef]
  12. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slotwaveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007).
    [CrossRef]
  13. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  14. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
    [CrossRef]
  15. G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express 16(17), 12677–12687 (2008).
    [CrossRef] [PubMed]
  16. G. Veronis and S. H. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
    [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  18. F. D. T. D. Luemrical, Lumerical Solutions, Inc. http://www.lumerical.com
  19. E. D. Palik, Handbook of optical constants of solids,(Academic press,1998).

2010 (4)

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[CrossRef] [PubMed]

M. A. Swillam and A. S. Helmy, “Analysis and applications of 3D rectangular metallic waveguides,” Opt. Express 18(19), 19831–19843 (2010).
[CrossRef] [PubMed]

2008 (3)

P. Berini, “Bulk and surface sensitivity of surface plasmon waveguide,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express 16(17), 12677–12687 (2008).
[CrossRef] [PubMed]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

2007 (4)

2006 (2)

2005 (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Berini, P.

P. Berini, “Bulk and surface sensitivity of surface plasmon waveguide,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Brongersma, M. L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Chen, L.

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Dal Negro, L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Elezzabi, A.

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Elezzabi, A. Y.

Fan, S.

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slotwaveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Fan, S. H.

Feigenbaum, E.

Feng, N. N.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Green, W. M. J.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Han, Z.

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[CrossRef] [PubMed]

Helmy, A. S.

Hoffman, G. B.

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hsieh, I.-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Lipson, M.

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Maier, S. A.

Orenstein, M.

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Reano, R. M.

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Shakya, J.

Swillam, M. A.

Van, V.

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[CrossRef] [PubMed]

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Veronis, G.

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

J. Lightwave Technol. (2)

N. J. Phys. (1)

P. Berini, “Bulk and surface sensitivity of surface plasmon waveguide,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

Nat. Photonics (1)

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).

F. D. T. D. Luemrical, Lumerical Solutions, Inc. http://www.lumerical.com

E. D. Palik, Handbook of optical constants of solids,(Academic press,1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

The dispersion characteristics of the PSW and silicon waveguide. The PSW has a dimension of 50 nm gap and 340 height, silicon waveguide is 400 nm wide and 340 nm height.

Fig. 2
Fig. 2

Schematic diagram of the orthogonal coupling technique (top view).

Fig. 3
Fig. 3

Coupling from silicon waveguide to PSW upon 1550 nm continuous wave excitation. Bright spots generated by 2D FDTD depict the electric field intensities overlaying the structure in Fig. 2.

Fig. 4
Fig. 4

The dispersion characteristics of the PSW and silicon waveguide for different for different width of the silicon waveguide.

Fig. 5
Fig. 5

Transmission spectra generated by 3D FDTD red shifting with increasing silicon waveguide widths.

Fig. 6
Fig. 6

Transmission vs. silicon waveguide width generated by 3D FDTD plotted at 1550 nm wavelength. The peak transmission reaches about 70% for a silicon waveguide 430 nm wide.

Fig. 7
Fig. 7

The dispersion characteristics of the PSW and silicon waveguide for different refractive index of the filled material in the slot region.

Fig. 8
Fig. 8

Transmission spectra generated by 3D FDTD attenuated as n is increased from 1.0 to 2.0.

Fig. 9
Fig. 9

Platform for in and out coupling from the PSW. The Si waveguide on the left will carry the signal to the orthogonally placed PSW. The light travels through the PSW and is again orthogonally coupled out into the output silicon waveguide. The overlay boxes indicate positions of the source and detector in the 3D FDTD simulations.

Fig. 10
Fig. 10

Resonance effects are compared for the parallel and orthogonal configurations using results from 2D FDTD simulations. The inset indicates the cavity definition in the orthogonal configuration.

Fig. 11
Fig. 11

The normalized transmission and reflection characteristics of the double coupler scheme shown in Fig. 9.

Fig. 12
Fig. 12

Scanning electron microscope (SEM) picture for the orthogonal coupling scheme.

Fig. 13
Fig. 13

Optical field propagation from Si waveguide through the PSW using FDTD simulation imposed on the SEM pic .

Fig. 14
Fig. 14

Schematic diagram of the measurement setup.

Fig. 15
Fig. 15

Infrared camera images of the mode profile of Si waveguide after passing through PSW of 1200 nm length.

Fig. 16
Fig. 16

The measured transmission characteristics for PSW with slot length of 1.2 μm and straight silicon waveguide with slot, the dashed lines represent the average results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I L = L C 1 + L p S i + L p P S W + L C 2 + L C 3 + L C 4

Metrics