M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).

[Crossref]
[PubMed]

A. Grjasnow, A. Wuttig, and R. Riesenberg, “Phase resolving microscopy by multi-plane diffraction detection,” J. Microsc. 231(1), 115–123 (2008).

[Crossref]
[PubMed]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280(2), 243–248 (2007).

[Crossref]

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” in Proc. IEEE, vol. 93, pp. 216–231 (2005).

[Crossref]

P. P. Vaidyanathan, “Generalizations of the Sampling Theorem: Seven Decades After Nyquist,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48, 1094–1109 (2001).

[Crossref]

H. J. Kreuzer, “Low energy electron point source microscopy,” Micron 26(6), 503–509 (1995).

[Crossref]

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11(7), 2011–2015 (1994).

[Crossref]

G.-Z. Yang, B.-Z. Dong, B.-Y. Gu, J.-Y. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33(2), 209–218 (1994).

[Crossref]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227 – 246 (1972).

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777 (1948).

[Crossref]
[PubMed]

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” in Proc. IEEE, vol. 93, pp. 216–231 (2005).

[Crossref]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280(2), 243–248 (2007).

[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777 (1948).

[Crossref]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227 – 246 (1972).

J. W. Goodman, Introduction to Fourier Optics, Electrical and Computer Engineering, 2nd ed. (McGraw-Hill Companies, Inc., USA, 1996).

A. Grjasnow, A. Wuttig, and R. Riesenberg, “Phase resolving microscopy by multi-plane diffraction detection,” J. Microsc. 231(1), 115–123 (2008).

[Crossref]
[PubMed]

M. Gu, Advanced Optical Imaging Theory, vol. 75 of Optical Sciences (Springer, Berlin, Germany, 1999).

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” in Proc. IEEE, vol. 93, pp. 216–231 (2005).

[Crossref]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35(2), 217–219 (2010).

[Crossref]
[PubMed]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34(8), 1162–1164 (2009).

[Crossref]
[PubMed]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34(8), 1162–1164 (2009).

[Crossref]
[PubMed]

H. J. Kreuzer, “Low energy electron point source microscopy,” Micron 26(6), 503–509 (1995).

[Crossref]

H. J. Kreuzer, “Holographic microscope and method of hologram reconstruction,” US 6,411,406 B1, June 25, 2002 (Canadian Patent CA2376395).

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280(2), 243–248 (2007).

[Crossref]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280(2), 243–248 (2007).

[Crossref]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35(2), 217–219 (2010).

[Crossref]
[PubMed]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34(8), 1162–1164 (2009).

[Crossref]
[PubMed]

A. Grjasnow, A. Wuttig, and R. Riesenberg, “Phase resolving microscopy by multi-plane diffraction detection,” J. Microsc. 231(1), 115–123 (2008).

[Crossref]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227 – 246 (1972).

P. P. Vaidyanathan, “Generalizations of the Sampling Theorem: Seven Decades After Nyquist,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48, 1094–1109 (2001).

[Crossref]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35(2), 217–219 (2010).

[Crossref]
[PubMed]

A. Grjasnow, A. Wuttig, and R. Riesenberg, “Phase resolving microscopy by multi-plane diffraction detection,” J. Microsc. 231(1), 115–123 (2008).

[Crossref]
[PubMed]

F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006).

[Crossref]
[PubMed]

G.-Z. Yang, B.-Z. Dong, B.-Y. Gu, J.-Y. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33(2), 209–218 (1994).

[Crossref]
[PubMed]

V. Nascov and P. C. Logofătu, “Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48(22), 4310–4319 (2009).

[Crossref]
[PubMed]

P. P. Vaidyanathan, “Generalizations of the Sampling Theorem: Seven Decades After Nyquist,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48, 1094–1109 (2001).

[Crossref]

A. Grjasnow, A. Wuttig, and R. Riesenberg, “Phase resolving microscopy by multi-plane diffraction detection,” J. Microsc. 231(1), 115–123 (2008).

[Crossref]
[PubMed]

H. J. Kreuzer, “Low energy electron point source microscopy,” Micron 26(6), 503–509 (1995).

[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777 (1948).

[Crossref]
[PubMed]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280(2), 243–248 (2007).

[Crossref]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34(8), 1162–1164 (2009).

[Crossref]
[PubMed]

M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35(2), 217–219 (2010).

[Crossref]
[PubMed]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).

[Crossref]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227 – 246 (1972).

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” in Proc. IEEE, vol. 93, pp. 216–231 (2005).

[Crossref]

H. J. Kreuzer, “Holographic microscope and method of hologram reconstruction,” US 6,411,406 B1, June 25, 2002 (Canadian Patent CA2376395).

J. W. Goodman, Introduction to Fourier Optics, Electrical and Computer Engineering, 2nd ed. (McGraw-Hill Companies, Inc., USA, 1996).

M. Gu, Advanced Optical Imaging Theory, vol. 75 of Optical Sciences (Springer, Berlin, Germany, 1999).