Abstract

A dual-wavelength emission source is realized by asymmetrically pumping a two-section quantum-dot distributed feedback laser. It is found that under asymmetric bias conditions, the powers between the ground-state and excited-state modes of the two-section device can be equalized, which is mainly attributed to the unique carrier dynamics of the quantum-dot gain medium. As a result, a two-color emission with an 8-THz frequency difference is realized that has potential as a compact THz source. It is also shown that the combination of significant inhomogeneous broadening and excited-state coupled mode operation allows the manipulation of the quantum-dot states through external optical stabilization.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Koch, “Terahertz Communications: A 2020 Vision,” in Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles, X. –C. Zhang, H. Eisele, A. Krotkus, eds. (Springer, New York, 2007).
  2. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  3. P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1815), 351–363, discussion 363–364 (2004).
    [CrossRef] [PubMed]
  4. S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
    [CrossRef]
  5. C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” in Proceedings of IEEE on T-Ray Imaging, Sensing, and Retection, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1559–1565.
  6. D. Saeedkia and S. Safavi-Naeini, “Terahertz photonics: optoelectronic techniques for generation and detection of terahertz waves,” J. Lightwave Technol. 26(15), 2409–2423 (2008).
    [CrossRef]
  7. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
    [CrossRef]
  8. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
    [CrossRef]
  9. M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
    [CrossRef]
  10. L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
    [CrossRef]
  11. E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(2), 497–545 (2003).
    [CrossRef]
  12. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
    [CrossRef]
  13. J. C. Pearson, K. A. McIntosh, and S. Verghese, Long-Wavelength Infrared Semiconductor Lasers (John Wiley & Sons, 2005), Chap. 7.
  14. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995).
    [CrossRef] [PubMed]
  15. P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
    [CrossRef]
  16. S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
    [CrossRef]
  17. S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
    [CrossRef]
  18. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
    [CrossRef]
  19. P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
    [CrossRef]
  20. A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
    [CrossRef]
  21. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
    [CrossRef]
  22. C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
    [CrossRef]
  23. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
    [CrossRef]
  24. M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
    [CrossRef] [PubMed]
  25. M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
    [CrossRef]
  26. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys. 38(13), 2112–2118 (2005).
    [CrossRef]
  27. T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain- and index-coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficients with currents,” IEICE Trans. Electron. 83(3), 488–495 (2000).
  28. P. Bhattacharya, “Lasers: structures and properties” in Semiconductor Optoelectronic Devices, E. Svendsen, R. Kernan, P. Daly, eds. (Prentice Hall, Upper saddle river, NJ, 1994).
  29. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
    [CrossRef]
  30. C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
    [CrossRef]
  31. F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
    [CrossRef]
  32. F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
    [CrossRef]

2010

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

2009

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
[CrossRef]

2008

D. Saeedkia and S. Safavi-Naeini, “Terahertz photonics: optoelectronic techniques for generation and detection of terahertz waves,” J. Lightwave Technol. 26(15), 2409–2423 (2008).
[CrossRef]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

2006

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

2005

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[CrossRef]

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys. 38(13), 2112–2118 (2005).
[CrossRef]

2004

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1815), 351–363, discussion 363–364 (2004).
[CrossRef] [PubMed]

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

2003

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
[CrossRef]

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(2), 497–545 (2003).
[CrossRef]

2001

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

2000

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain- and index-coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficients with currents,” IEICE Trans. Electron. 83(3), 488–495 (2000).

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

1999

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

1997

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

1996

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

1995

1993

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Abbott, D.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
[CrossRef]

Badcock, T. J.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Ballingall, J. M.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Besnard, P.

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

Bleuel, T.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Brown, E. R.

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(2), 497–545 (2003).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

Bründermann, E.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Camara Mayorga, I.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

Cataluna, M. A.

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

DiNatale, W. F.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

Erbert, G.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Even, J.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Ferguson, B.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
[CrossRef]

Fiore, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Fischer, M.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Forchel, A.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Fricke, J.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Gioannini, M.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Glebov, L. B.

S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
[CrossRef]

Grillot, F.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

Groom, K. M.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Gupta, S.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Gutiérrez, M.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Hangyo, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[CrossRef]

Havenith, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Ho, P.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Hoffmann, S.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Hofmann, J.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Hofmann, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Homeyer, E.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Hopkinson, M.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Houdrè, R.

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Hwang, K. C.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Hyodo, M.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

Ilegems, M.

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Jin, C. Y.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Kamp, M.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Kira, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Klehr, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Klotzkin, D.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

Knauer, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Koch, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Koch, S. W.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Krestnikov, I.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

Krishna, S.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

Lester, L. F.

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys. 38(13), 2112–2118 (2005).
[CrossRef]

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Li, H.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

Lin, C.-Y.

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

Liu, G. T.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

Liu, H. Y.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Livshits, D.

Loualiche, S.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Lyszczarz, T. M.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

Malcoci, A.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

Malloy, K. J.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Markus, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

Matus, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Mazurowski, J.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

McIntosh, K. A.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

McMahon, O. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

Mesaritakis, C.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

Mikroulis, S.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

Mikulics, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Miles, R. E.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

Moloney, J. V.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Montrosset, I.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[CrossRef]

Moskalenko, A. S.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Mowbray, D. J.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Naderi, N. A.

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

Naftaly, M.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

Nakano, Y.

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain- and index-coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficients with currents,” IEICE Trans. Electron. 83(3), 488–495 (2000).

Nakura, T.

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain- and index-coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficients with currents,” IEICE Trans. Electron. 83(3), 488–495 (2000).

Newell, T. C.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Nichols, K. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

Nikitichev, D. I.

Oesterle, U.

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Onodera, N.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

Pan, C.-L.

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Pellandini, P.

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Piron, R.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

Pochet, M.

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

Qasaimeh, O.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

Rafailov, E. U.

Reinhard, M.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Reithmaier, J. P.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Roditi, E.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

Royce, R.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

Saeedkia, D.

Safavi-Naeini, S.

Saito, S.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

Sakai, K.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

Schafer, F.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

Simos, C.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

Simos, H.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

Smirnov, V. I.

S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
[CrossRef]

Stanley, R. P.

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Stintz, A.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Stone, M. R.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

Su, H.

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys. 38(13), 2112–2118 (2005).
[CrossRef]

Sutliff, J.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Syvridis, D.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010).
[CrossRef] [PubMed]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

Taday, P. F.

P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1815), 351–363, discussion 363–364 (2004).
[CrossRef] [PubMed]

Tani, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

Venus, G. B.

S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
[CrossRef]

Veselinov, K.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Walther, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Wang, C.-L.

Wang, S.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
[CrossRef]

Weisbuch, C.

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Whitaker, J.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Wilk, R.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Williamson, S. L.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Zhang, X.-C.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
[CrossRef]

Zhou, W.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

Zhu, D.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

Zolotovskaya, S.

S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
[CrossRef]

Appl. Phys. Lett.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[CrossRef]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010).
[CrossRef]

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008).
[CrossRef]

Electron. Lett.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996).
[CrossRef]

IEE Proc., Optoelectron.

C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006).
[CrossRef]

IEEE J. Quantum Electron.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000).
[CrossRef]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

IEICE Trans. Electron.

T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain- and index-coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficients with currents,” IEICE Trans. Electron. 83(3), 488–495 (2000).

IET Optoelectron.

F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009).
[CrossRef]

Int. J. High Speed Electron. Syst.

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(2), 497–545 (2003).
[CrossRef]

J. Biol. Phys.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003).
[CrossRef]

J. Lightwave Technol.

J. Phys. D Appl. Phys.

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys. 38(13), 2112–2118 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001).
[CrossRef]

Philos. Transact. A Math. Phys. Eng. Sci.

P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1815), 351–363, discussion 363–364 (2004).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[CrossRef]

Other

M. Koch, “Terahertz Communications: A 2020 Vision,” in Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles, X. –C. Zhang, H. Eisele, A. Krotkus, eds. (Springer, New York, 2007).

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” in Proceedings of IEEE on T-Ray Imaging, Sensing, and Retection, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1559–1565.

J. C. Pearson, K. A. McIntosh, and S. Verghese, Long-Wavelength Infrared Semiconductor Lasers (John Wiley & Sons, 2005), Chap. 7.

P. Bhattacharya, “Lasers: structures and properties” in Semiconductor Optoelectronic Devices, E. Svendsen, R. Kernan, P. Daly, eds. (Prentice Hall, Upper saddle river, NJ, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Oblique schematic view of the epitaxial layers and two-section cavity structure of the InAs QD LLC-DFB laser. (b) Oblique SEM image of the 100 nm wide chromium grating lines adjacent to the ridge waveguide processed by electron-beam lithography and metal evaporation.

Fig. 2
Fig. 2

(a) Room temperature Light-Current characteristics of the two-section QD DFB laser. The inset figure shows the optical spectrum of the solitary laser at 110 mA with a side-mode suppression ratio of > 40 dB. (b) Broad optical spectrum of the two-section DFB laser at 110 mA indicating the existence of the ES and GS peaks under uniform pumping condition.

Fig. 3
Fig. 3

Wide-span spectra of the QD DFB laser under uniform and asymmetric bias conditions. Under asymmetric pumping, the SMSR for the GS emission is 14 dB.

Fig. 4
Fig. 4

Broad optical spectra at uniform bias of 110 mA under free-running (no feedback) and external optical feedback level ranges from −50 dB to −25 dB.

Fig. 5
Fig. 5

Schematic diagram of the experimental optical feedback setup.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ = κ i n d e x + i κ g a i n = κ ˜ e i θ ,

Metrics