Abstract

We report the first demonstration of Si microresonators (MRs) fabricated via substrate transfer on a silica waveguide (WG) wafer. Specifically, these Si microdisks were fabricated on a layer of Si (0.16-0.2 μm thick) that was directly-bonded on a silica waveguide wafer. We measured the throughput and drop spectrum of these microdisks when coupled to bonded silica waveguides, and observed loaded quality-factors (Qs) of ≥104. We modeled, in addition, the dispersion of whispering gallery modes in these microdisks to show phase-matched coupling with an incident silica waveguide or fiber-taper. Using the measured extinction ratio and loaded-Q, we evaluated, in addition, the coupling coefficient between the incident waveguide/taper and Si MR.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Selective coupling of Whispering Gallery Modes in film coated micro-resonators

Andrea Barucci, Immacolata Angelica Grimaldi, Gianluca Persichetti, Simone Berneschi, Silvia Soria, Bruno Tiribilli, Romeo Bernini, Francesco Baldini, and Gualtiero Nunzi Conti
Opt. Express 26(9) 11737-11743 (2018)

Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited]

David Allioux, Ali Belarouci, Darren Hudson, Eric Magi, Milan Sinobad, Guillaume Beaudin, Adrien Michon, Neetesh Singh, Regis Orobtchouk, and Christian Grillet
Photon. Res. 6(5) B74-B81 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
    [Crossref]
  2. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
    [Crossref]
  3. S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
    [Crossref]
  4. A. Morand, Y. Zhang, B. Martin, K. Phan Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, “Ultra-compact microdisk resonator filters on SOI substrate,” Opt. Express 14(26), 12814–12821 (2006).
    [Crossref] [PubMed]
  5. C. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” IEEE J. Lightw. Technol. 24(12), 4763–4789 (2006).
    [Crossref]
  6. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. New York: Academic, 2006.
  7. See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
    [Crossref]
  8. See, for example, Q.-Y. Tong, and U. Gösele, “Semiconductor Wafer Bonding: Science and Technology,” John Wiley and Sons, Inc., 1999.
  9. See, for example,M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  10. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21(17), 1390–1392 (1996).
    [Crossref] [PubMed]
  11. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [Crossref] [PubMed]
  12. M. Borselli, “ High-Q Microresonators as Lasing Elements for Silicon Photonics,“ Ph.D. thesis, California Institute of Technology (2006).
  13. The Multi-Grid Finite Element Method used is part of the OlympIOs Integrated Optics Software (Version 5.1) developed by C2V.
  14. See, for example,A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  15. See for example, Yariv and Yeh, Photonics, 6th Edition, Chapter 3, (Oxford University Press, 2007).
  16. P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon Photonics,” IEEE J. Lightw. Technol. 24(4), 1796–1804 (2006).
    [Crossref]

2009 (1)

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

2008 (1)

S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
[Crossref]

2007 (1)

See, for example,M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

2006 (3)

C. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” IEEE J. Lightw. Technol. 24(12), 4763–4789 (2006).
[Crossref]

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon Photonics,” IEEE J. Lightw. Technol. 24(4), 1796–1804 (2006).
[Crossref]

A. Morand, Y. Zhang, B. Martin, K. Phan Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, “Ultra-compact microdisk resonator filters on SOI substrate,” Opt. Express 14(26), 12814–12821 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[Crossref]

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
[Crossref]

2000 (1)

See, for example,A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1996 (1)

Amans, D.

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[Crossref]

Beals, M.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Beattie, J.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Benech, P.

Bolivar, P. H.

Borselli, M.

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[Crossref] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[Crossref]

Carothers, D.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Chen, Y.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Chu, S. T.

Doerr, C.

C. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” IEEE J. Lightw. Technol. 24(12), 4763–4789 (2006).
[Crossref]

Fédéli, J. M.

Gill, D.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Hadji, E.

Henschel, W.

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon Photonics,” IEEE J. Lightw. Technol. 24(4), 1796–1804 (2006).
[Crossref]

Jalali, B.

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon Photonics,” IEEE J. Lightw. Technol. 24(4), 1796–1804 (2006).
[Crossref]

Johnson, T.

Khan, M.

S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
[Crossref]

Kimerling, L.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Koonath, P.

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon Photonics,” IEEE J. Lightw. Technol. 24(4), 1796–1804 (2006).
[Crossref]

Kurz, H.

Little, B. E.

Martin, B.

Michel, J.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Morand, A.

Niehusmann, J.

Okamoto, K.

C. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” IEEE J. Lightw. Technol. 24(12), 4763–4789 (2006).
[Crossref]

Oxborrow, M.

See, for example,M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Painter, O.

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[Crossref] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[Crossref]

Patel, S.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Phan Huy, K.

Pomerene, A.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Qi, M.

S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
[Crossref]

Rasras, M.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Shen, H.

S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
[Crossref]

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[Crossref]

Tu, K.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Verbert, J.

Vörckel, A.

Wahlbrink, T.

White, A.

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

Xiao, S.

S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
[Crossref]

Yariv, A.

See, for example,A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Zhang, Y.

Appl. Phys. Lett. (1)

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[Crossref]

Electron. Lett. (1)

See, for example,A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

IEEE J. Light. Technol. (2)

S. Xiao, M. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters with Free Spectral Ranges Over 30 nm,” IEEE J. Light. Technol. 26(2), 228–236 (2008).
[Crossref]

See, for example,M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a Tunable Microwave-Photonic Notch Filter using Low-Loss Silicon Ring Resonators,” IEEE J. Light. Technol. 27(12), 2105–2110 (2009).
[Crossref]

IEEE J. Lightw. Technol. (2)

C. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” IEEE J. Lightw. Technol. 24(12), 4763–4789 (2006).
[Crossref]

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon Photonics,” IEEE J. Lightw. Technol. 24(4), 1796–1804 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

See, for example,M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Other (5)

M. Borselli, “ High-Q Microresonators as Lasing Elements for Silicon Photonics,“ Ph.D. thesis, California Institute of Technology (2006).

The Multi-Grid Finite Element Method used is part of the OlympIOs Integrated Optics Software (Version 5.1) developed by C2V.

See for example, Yariv and Yeh, Photonics, 6th Edition, Chapter 3, (Oxford University Press, 2007).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. New York: Academic, 2006.

See, for example, Q.-Y. Tong, and U. Gösele, “Semiconductor Wafer Bonding: Science and Technology,” John Wiley and Sons, Inc., 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Fabrication of Si microdisks on substrate-transferred Si via wafer-bonding. Steps I to IV show the fabrication sequence of the substrate-transferred Si microdisks. An infra-red transmission image of the bonded wafers, taken after Step II, is shown as an inset.
Fig. 2
Fig. 2 a. High magnification micrograph that focused on the coupling region between a Si microdisk and a bonded silica WG. b. Micrograph of a D=200 μm Si microdisk bonded and coupled to both throughput- and drop-waveguides.
Fig. 3
Fig. 3 Throughput resonance spectrum of a Si microdisk (d=0.2 μm, D=100 μm) measured with a fiber-taper. The inset shows a photograph of the microdisk and the fiber-taper used to probe the resonances.
Fig. 4
Fig. 4 Resonance spectrum measured by coupling the bonded silica WGs to Si microdisks (d=0.16 μm): a. Measured throughput resonances of a Si microdisk with D=400 μm b. Measured drop resonances of a Si microdisk with D=300 μm
Fig. 5
Fig. 5 a. Illustration of cylindrical Si microdisk b. Azimuthal and radial dependence of TM WGM (p=1, m=245) for a Si microdisk with D=100 μm. c. Profile of the fundamental TM radial mode ψ1(ρ) for the microdisk of Fig. 5b.
Fig. 6
Fig. 6 Plot of the resonance wavelengths vs the azimuthal mode number m for a Si microdisk (D=100 μm, d=0.2 μm). The dispersion of the fiber-taper used to probe the resonances and the dispersion of Z(z) are also plotted.
Fig. 7
Fig. 7 Plot of the resonance wavelengths vs the azimuthal mode number m for a Si microdisk (D=300 μm, d=0.16 μm) bonded to silica. The dispersion of the silica WG bonded underneath the Si microdisk is also plotted.
Fig. 8
Fig. 8 Measured throughput resonance spectrum under three different coupling conditions
Fig. B.1
Fig. B.1 Evanescent coupling between an incident WG and a MR

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F ( ρ , ϕ , z ) = Z ( z ) Ω ( ϕ ) Ψ ( ρ )
E z ( p , m ) = Z ( z ) e ± i m ϕ Ψ p ( ρ )
G = α c i r 2 | t | 2 = α c i r 2 ( 1 Κ )
E R = ( ( 1 Κ ) G ( 1 Κ ) + G 1 + G 1 G ) 2
k o n eff J m + 1 ( k o n eff R ) = ( α + m R ) J m ( k o n eff R )
Ψ p ( ρ ) = J m ( k o n eff ρ ) for ρ R Ψ p ( ρ ) = J m ( k o n eff R ) e α ( ρ R ) for ρ > R
d 2 Z d z 2 + k o 2 ( n 2 ( z ) n eff 2 ) Z = 0
h a J l + 1 ( h a ) n 1 J l ( h a ) = q a K l + 1 ( q a ) n 2 K l ( q a )
E y = A J l ( h ρ ) e j ( l ϕ β z ) for ρ < a E y = B K l ( q ρ ) e j ( l ϕ β z ) for ρ > a
E o u t E i n = t α c i r e j δ 1 α c i r t * e j δ
E o u t E i n = [ | t | e j ( ϕ t + δ ) α c i r 1 α c i r | t | e j ( ϕ t + δ ) ] e j δ
E R = ( | t | α c i r | t | + α c i r 1 + α c i r | t | 1 α c i r | t | ) 2
E R = ( ( 1 Κ ) G ( 1 Κ ) + G 1 + G 1 G ) 2
G = e ω o t d Q L 1 ω ο t d Q L or equivalently Q L ω ο t d 1 G

Metrics