Abstract

We demonstrate a tunable and omnidirectional microlaser in the form of a microdroplet of a dye-doped, cholesteric liquid crystal in a carrier fluid. The cholesteric forms a Bragg-onion optical microcavity and the omnidirectional 3D lasing is due to the stimulated emission of light from the dye molecules in the liquid crystal. The lasing wavelength depends solely on the natural helical period of the cholesteric and can be tuned by varying the temperature. Millions of microlasers can be formed simply by mixing a liquid crystal, a laser dye and a carrier fluid, thus providing microlasers for soft-matter photonic devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
    [CrossRef] [PubMed]
  2. P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).
  3. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
    [CrossRef]
  4. B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
    [CrossRef]
  5. E. Alvarez, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes,” Mol. Cryst. Liq. Cryst 369, 75–82 (2001).
    [CrossRef]
  6. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
    [CrossRef]
  7. A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
    [CrossRef]
  8. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
    [CrossRef]
  9. F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
    [CrossRef]
  10. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
    [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  12. J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
    [CrossRef]
  13. F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
  14. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
    [CrossRef]
  15. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [CrossRef] [PubMed]
  16. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
    [CrossRef]
  17. D. Brady, G. Papen, and J. E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B 10, 644–657 (1993).
    [CrossRef]
  18. G. N. Burlak, “Optical radiation from coated microsphere with active core,” Phys. Lett. A 299, 94–101 (2002).
    [CrossRef]
  19. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29, 424–426 (2004).
    [CrossRef] [PubMed]
  20. A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
    [CrossRef]
  21. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
    [CrossRef]
  22. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
    [CrossRef] [PubMed]
  23. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
    [CrossRef]
  24. I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
    [CrossRef]
  25. J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
    [CrossRef]
  26. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
  27. Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
    [CrossRef]
  28. D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
    [CrossRef]
  29. H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
    [CrossRef]
  30. M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
    [PubMed]
  31. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [CrossRef]
  32. M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
    [CrossRef]
  33. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
    [CrossRef]
  34. A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
    [CrossRef]
  35. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
    [CrossRef]

2010 (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[CrossRef]

2009 (4)

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

2007 (3)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

2006 (2)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[CrossRef]

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

2005 (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[CrossRef]

2004 (5)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29, 424–426 (2004).
[CrossRef] [PubMed]

J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[CrossRef] [PubMed]

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[CrossRef]

2002 (2)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

G. N. Burlak, “Optical radiation from coated microsphere with active core,” Phys. Lett. A 299, 94–101 (2002).
[CrossRef]

2001 (3)

A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[CrossRef]

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[CrossRef]

E. Alvarez, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes,” Mol. Cryst. Liq. Cryst 369, 75–82 (2001).
[CrossRef]

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

1998 (1)

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[CrossRef]

1997 (1)

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

1994 (1)

K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (2)

M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
[PubMed]

J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
[CrossRef]

1991 (1)

D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
[CrossRef]

1989 (1)

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

1984 (1)

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
[CrossRef]

1982 (1)

H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
[CrossRef]

Alteheld, A.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Alvarez, E.

E. Alvarez, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes,” Mol. Cryst. Liq. Cryst 369, 75–82 (2001).
[CrossRef]

Aoki, K.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Araoka, F.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

Bailey, C.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Benisty, H.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Bezic, J.

J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
[CrossRef]

Bouligand, Y.

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
[CrossRef]

Brady, D.

Burlak, G. N.

G. N. Burlak, “Optical radiation from coated microsphere with active core,” Phys. Lett. A 299, 94–101 (2002).
[CrossRef]

Cao, W.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Carvalho, I. C. S.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[CrossRef]

Coles, H. J.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[CrossRef]

Crooker, P. P.

D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
[CrossRef]

H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

De Gennes, P.G.

P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

DeRose, G.

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[CrossRef]

Drzaic, P. S.

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

Dubreuil, N.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

English, J. H.

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

Fan, B.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[CrossRef]

Field, L. M.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Fleming, J. G.

Ford, A. D.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[CrossRef]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Geluk, E. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Genack, A. Z.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[CrossRef]

Gossard, A. C.

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

Gourevich, I.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[CrossRef]

J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[CrossRef] [PubMed]

Guimard, D.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Ha, N. Y.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Hall, D. G.

K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
[CrossRef] [PubMed]

Hare, J.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Haroche, S.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Hegarty, J.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Houdre, R.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Ishida, S.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Ishikawa, K.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[CrossRef]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Jeong, S. M.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Jewell, J. L.

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kitzerow, H. -S.

H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
[CrossRef]

Knight, J. C.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Kopp, V. I.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[CrossRef]

Krauss, T. F.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Kumacheva, E.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Kurik, M. V.

M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
[PubMed]

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Labilloy, D.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Lavrentovich, O. D.

M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
[PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Lefcvre-Seguin, V.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Liang, W.

Lin, S.-Y.

Livolant, F.

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
[CrossRef]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

McCall, S. L.

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

Moreira, M. F.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[CrossRef]

Morris, S. M.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[CrossRef]

Munoz, A.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[CrossRef]

Munoz F., A.

Muševic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Nishimura, S.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Nomura, M.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Notzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Oei, Y.-S.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Oesterle, U.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Palffy-Muhoray, P.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[CrossRef]

A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[CrossRef]

Papen, G.

Paquet, C.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Petukhova, A.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[CrossRef]

Prost, J.

P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).

Raimond, J.-M.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Roycroft, B.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Saarinen, J. J.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Sandoghdar, V.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

Scheuer, J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[CrossRef]

J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Shaw, A.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Shin, K.-C.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

Sipe, J. E.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

D. Brady, G. Papen, and J. E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B 10, 644–657 (1993).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Smith, C. J. M.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Sonoyama, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[CrossRef]

Stanley, R.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Sullivan, K. G.

K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Suzaki, G.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Swager, T. M.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

Taheri, B.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[CrossRef]

A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[CrossRef]

Takanishi, Y.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[CrossRef]

Takezoe, H.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

Treussart, F.

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Twieg, R.

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[CrossRef]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Vithana, H. K. M.

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[CrossRef]

Wei, Z.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Weisbuch, C.

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Xu, Y.

Yang, D. K.

D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
[CrossRef]

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[CrossRef]

J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[CrossRef] [PubMed]

Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29, 424–426 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, Y.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Zhu, Z.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

Žumer, S.

J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
[CrossRef]

Ann. Telecommun. (1)

F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).

Appl. Phys. Lett. (6)

A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[CrossRef]

J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[CrossRef]

A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[CrossRef]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[CrossRef]

J. Appl. Phys. (2)

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.-Paris (1)

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[CrossRef]

Liq. Cryst. (3)

D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
[CrossRef]

H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
[CrossRef]

J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
[CrossRef]

Macromolecules (1)

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[CrossRef]

Mater. Today (1)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst (2)

B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[CrossRef]

E. Alvarez, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes,” Mol. Cryst. Liq. Cryst 369, 75–82 (2001).
[CrossRef]

Nat. Mater. (1)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[CrossRef]

Nat. Photonics (3)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Lett (1)

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. A (1)

G. N. Burlak, “Optical radiation from coated microsphere with active core,” Phys. Lett. A 299, 94–101 (2002).
[CrossRef]

Phys. Rev. A (1)

K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
[CrossRef] [PubMed]

Pis’ma Zh. eksp. teor, Fiz. (1)

M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
[PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other (2)

P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

Supplementary Material (1)

» Media 1: MOV (1254 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic view of the arrangement of CLC molecules in a cholesteric micro-droplet with parallel anchoring of the LC molecules at the surface. The helical structure of the liquid crystal originates from the center of the droplet and gives rise to concentric shells of constant refractive index. This dielectric structure is optically equivalent to the well-known Bragg-onion optical microcavity.

Fig. 2
Fig. 2

(a) A typical cholesteric droplet with a pitch p = 2.2 μm in glycerol. The light and dark concentric shells are due to the spatial variation of the refractive index of the cholesteric liquid crystal in the radial direction. (b) Close up of the center of the cholesteric droplet, when viewing in the direction parallel to the disclination line. (c) Cholesteric droplet with PBG in the visible range of light, viewed under crossed polarizers and white-light illumination. (d–f) ( Media 1) Omnidirectional (3D) lasing in a cholesteric droplet illuminated by laser pulses (λ = 532 nm) and a weak white background illumination. (d) Below the lasing threshold (1.6 mJ/cm2) the droplet is fluorescing uniformly. (e) Just at the threshold for lasing (1.9 mJ/cm2), a bright spot of radiating monochromatic light can be observed in the center of the droplet. (f) Lasing becomes very intense at a high pump power (12 mJ/cm2).

Fig. 3
Fig. 3

Lasing characteristics of a single droplet of dye-doped CLC. (a) The spectra of light emitted from the center of the CLC microdroplet at different energies of the pumping pulse. (b) The radiated laser-light intensity as a function of the input-pulse energy density. The threshold for lasing is clearly seen at ∼1.8 mJ/cm2. (c) Magnified lasing spectrum showing a laser linewidth of ∼0.10 nm. (d) The threshold for lasing as a function of the diameter of the CLC microdroplet. All the spectra were measured using an imaging spectrometer with a 0.05 nm resolution (Andor, Shamrock SR-500i) and cooled EM-CCD camera (Andor, Newton DU970N).

Fig. 4
Fig. 4

Lasing spectrum of a single CLC droplet compared to the reflection spectrum of a 30 μm planar cell filled with the same CLC mixture. The reflection spectrum was measured for light propagating along the helix of the CLC.

Fig. 5
Fig. 5

(a) Lasing intensity from a single 50 μm CLC droplet as a function of the angle of rotation of the photodetector around the axis of the cylindrical tube, containing the micro-droplets. (b) Lasing spectra as a function of temperature. At higher temperatures the laser line is shifted outside the optimum wavelength region of the dye used, so the laser emission ceases.

Metrics