I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
E. Alvarez, “Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes,” Mol. Cryst. Liq. Cryst 369, 75–82 (2001).
[Crossref]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
[Crossref]
Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
[Crossref]
G. N. Burlak, “Optical radiation from coated microsphere with active core,” Phys. Lett. A 299, 94–101 (2002).
[Crossref]
M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[Crossref]
W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]
M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[Crossref]
H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]
A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]
S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[Crossref]
D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
[Crossref]
H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[Crossref]
P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[Crossref]
V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]
S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[Crossref]
S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[Crossref]
J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[Crossref]
J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[Crossref]
[PubMed]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
[Crossref]
[PubMed]
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[Crossref]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
H. -S. Kitzerow and P. P. Crooker, “Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields,” Liq. Cryst. 11, 561–568 (1982).
[Crossref]
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
[PubMed]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
M. V. Kurik and O. D. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” Pis’ma Zh. eksp. teor, Fiz. 35, 445–447 (1992).
[PubMed]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys.-Paris 45, 1899–1923 (1984).
[Crossref]
S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[Crossref]
J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[Crossref]
M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[Crossref]
H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]
A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9, 36–42 (2006).
[Crossref]
S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[Crossref]
W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]
B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[Crossref]
M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]
M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[Crossref]
W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]
B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[Crossref]
A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2004).
[Crossref]
P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristics of GaAs microresonators,” Appl. Phys. Lett. 54, 1400–1402 (1989).
[Crossref]
J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[Crossref]
J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
D. Brady, G. Papen, and J. E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B 10, 644–657 (1993).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
K. G. Sullivan and D. G. Hall, “Radiation in spherically symmetric structures,” I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85, 2691–2693 (2004).
[Crossref]
W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crstal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]
B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[Crossref]
A. Munoz F., P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26, 804–806 (2001).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46, 874–876 (2007).
[Crossref]
S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]
A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett. 94, 171115 (2009).
[Crossref]
F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, “Microlasers based on silica microspheres,” Ann. Telecommun. 52, 557–568 (1997).
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst 358, 73–82 (2001).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett 23, 1707–1709 (1998).
[Crossref]
I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: A route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]
A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
D. K. Yang and P. P. Crooker, “Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets,” Liq. Cryst. 9, 245–251 (1991).
[Crossref]
J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quant. 11, 476–484 (2005).
[Crossref]
J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers,” Opt. Lett. 29, 2641–2643 (2004).
[Crossref]
[PubMed]
Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29, 424–426 (2004).
[Crossref]
[PubMed]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]
J. Bezić and S. Žumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liq. Cryst. 11, 593–619 (1992).
[Crossref]