Abstract

An extended cavity Ti:Sapphire oscillator exhibits stable operation for positively chirped pulses, while in the negative chirp regime multiple pulses are present in the cavity. At the border of these regimes automodulations, being an effect of the interplay between population inversion, laser medium polarization and the laser pulse field, appear. Two particular instabilities: period doubling and chaotic behavior of the pulse train envelope are observed. Complex temporal evolution of the pulse spectrum within the modulation period is investigated.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Use of a simple cavity geometry for low and high repetition rate modelocked Ti:sapphire lasers

Amy L. Lytle, Erez Gershgoren, Ra’anan I. Tobey, Margaret M. Murnane, Henry C. Kapteyn, and Dirk Müller
Opt. Express 12(7) 1409-1416 (2004)

Period doubling of a femtosecond Ti:sapphire laser by total mode locking

Daniel Côté and Henry M. van Driel
Opt. Lett. 23(9) 715-717 (1998)

Positive-dispersion cavity-dumped Ti: sapphire laser oscillator and its application to white light generation

Xibin Zhou, Henry Kapteyn, and Margaret Murnane
Opt. Express 14(21) 9750-9757 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Marioni and A. A. Hnilo, “Self-starting of self mode-locking Ti:sapphire lasers. Description with a Poincaré map,” Opt. Commun. 147(1-3), 89–94 (1998).
    [Crossref]
  2. S. R. Bolton and M. R. Acton, “Quasiperiodic route to chaos in the Kerr-lens mode-locked Ti:sapphire laser,” Phys. Rev. A 62(6), 063803 (2000).
    [Crossref]
  3. J.-H. Lin, M.-D. Wei, W.-F. Hsieh, and H.-H. Wu, “Cavity configuration for soft-aperture Kerr-lens mode locking and multiple-period bifurcations in Ti:sapphire lasers,” J. Opt. Soc. Am. B 18(8), 1069–1075 (2001).
    [Crossref]
  4. M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
    [Crossref]
  5. M. G. Kovalsky and A. A. Hnilo, “Different routes to chaos in the Ti:sapphire laser,” Phys. Rev. A 70(4), 043813 (2004).
    [Crossref]
  6. Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119(1-2), 113–116 (1995).
    [Crossref]
  7. J. Jasapara, W. Rudolph, V. I. Kalashnikov, D. O. Krimer, I. G. Poloyko, and M. Lenzner, “Automodulations in Kerr-lens mode-locked solid-state lasers,” J. Opt. Soc. Am. B 17(2), 319–326 (2000).
    [Crossref]
  8. N. B. Abraham, P. Mandel, and L. M. Narducci, “Dynamical instabilities and pulsations in lasers,” Prog. Opt. 25, 1–190 (1988).
    [Crossref]
  9. “Recent Advances in Laser Dynamics: Control and Synchronization”, A. N. Pisarchik ed. (Research Signpost, Kerala, India, 2008)
  10. W. Gadomski and B. Ratajska-Gadomska, “Self pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B 15(11), 2681–2688 (1998).
    [Crossref]
  11. T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
    [Crossref]
  12. A. Sennaroglu and J. G. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Opt. Express 11(9), 1106–1113 (2003).
    [Crossref] [PubMed]
  13. T. M. Kardaś, P. Wasylczyk, and W. Gadomski, “A low repetition rate, passively modelocked Ti:Sapphire oscillator,” Photon. Lett. Poland 1(3), 133–135 (2009).
  14. P. Wasylczyk and C. Radzewicz, “Design and Alignment Criteria for a Simple, Robust, Diode-Pumped Femtosecond Yb:KYW Oscillator,” Laser Phys. 19(1), 129–133 (2009).
    [Crossref]
  15. V. L. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express 16(6), 4206–4216 (2008).
    [Crossref] [PubMed]
  16. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]

2009 (2)

T. M. Kardaś, P. Wasylczyk, and W. Gadomski, “A low repetition rate, passively modelocked Ti:Sapphire oscillator,” Photon. Lett. Poland 1(3), 133–135 (2009).

P. Wasylczyk and C. Radzewicz, “Design and Alignment Criteria for a Simple, Robust, Diode-Pumped Femtosecond Yb:KYW Oscillator,” Laser Phys. 19(1), 129–133 (2009).
[Crossref]

2008 (1)

2006 (1)

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

2004 (1)

M. G. Kovalsky and A. A. Hnilo, “Different routes to chaos in the Ti:sapphire laser,” Phys. Rev. A 70(4), 043813 (2004).
[Crossref]

2003 (1)

2001 (2)

J.-H. Lin, M.-D. Wei, W.-F. Hsieh, and H.-H. Wu, “Cavity configuration for soft-aperture Kerr-lens mode locking and multiple-period bifurcations in Ti:sapphire lasers,” J. Opt. Soc. Am. B 18(8), 1069–1075 (2001).
[Crossref]

M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
[Crossref]

2000 (2)

S. R. Bolton and M. R. Acton, “Quasiperiodic route to chaos in the Kerr-lens mode-locked Ti:sapphire laser,” Phys. Rev. A 62(6), 063803 (2000).
[Crossref]

J. Jasapara, W. Rudolph, V. I. Kalashnikov, D. O. Krimer, I. G. Poloyko, and M. Lenzner, “Automodulations in Kerr-lens mode-locked solid-state lasers,” J. Opt. Soc. Am. B 17(2), 319–326 (2000).
[Crossref]

1998 (2)

M. A. Marioni and A. A. Hnilo, “Self-starting of self mode-locking Ti:sapphire lasers. Description with a Poincaré map,” Opt. Commun. 147(1-3), 89–94 (1998).
[Crossref]

W. Gadomski and B. Ratajska-Gadomska, “Self pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B 15(11), 2681–2688 (1998).
[Crossref]

1995 (1)

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119(1-2), 113–116 (1995).
[Crossref]

1988 (1)

N. B. Abraham, P. Mandel, and L. M. Narducci, “Dynamical instabilities and pulsations in lasers,” Prog. Opt. 25, 1–190 (1988).
[Crossref]

1986 (1)

Abraham, N. B.

N. B. Abraham, P. Mandel, and L. M. Narducci, “Dynamical instabilities and pulsations in lasers,” Prog. Opt. 25, 1–190 (1988).
[Crossref]

Acton, M. R.

S. R. Bolton and M. R. Acton, “Quasiperiodic route to chaos in the Kerr-lens mode-locked Ti:sapphire laser,” Phys. Rev. A 62(6), 063803 (2000).
[Crossref]

Apolonski, A.

Bielawski, S.

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

Bolton, S. R.

S. R. Bolton and M. R. Acton, “Quasiperiodic route to chaos in the Kerr-lens mode-locked Ti:sapphire laser,” Phys. Rev. A 62(6), 063803 (2000).
[Crossref]

Erneux, T.

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

Fernández, A.

Fujimoto, J. G.

Gadomski, W.

T. M. Kardaś, P. Wasylczyk, and W. Gadomski, “A low repetition rate, passively modelocked Ti:Sapphire oscillator,” Photon. Lett. Poland 1(3), 133–135 (2009).

W. Gadomski and B. Ratajska-Gadomska, “Self pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B 15(11), 2681–2688 (1998).
[Crossref]

Hnilo, A. A.

M. G. Kovalsky and A. A. Hnilo, “Different routes to chaos in the Ti:sapphire laser,” Phys. Rev. A 70(4), 043813 (2004).
[Crossref]

M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
[Crossref]

M. A. Marioni and A. A. Hnilo, “Self-starting of self mode-locking Ti:sapphire lasers. Description with a Poincaré map,” Opt. Commun. 147(1-3), 89–94 (1998).
[Crossref]

Hsieh, W.-F.

Jasapara, J.

Joly, N.

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

Kalashnikov, V. I.

Kalashnikov, V. L.

Kardas, T. M.

T. M. Kardaś, P. Wasylczyk, and W. Gadomski, “A low repetition rate, passively modelocked Ti:Sapphire oscillator,” Photon. Lett. Poland 1(3), 133–135 (2009).

Kolokolnikov, T.

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

Kovalsky, M. G.

M. G. Kovalsky and A. A. Hnilo, “Different routes to chaos in the Ti:sapphire laser,” Phys. Rev. A 70(4), 043813 (2004).
[Crossref]

M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
[Crossref]

Krimer, D. O.

Lenzner, M.

Libertun, A.

M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
[Crossref]

Lin, J.-H.

Mandel, P.

N. B. Abraham, P. Mandel, and L. M. Narducci, “Dynamical instabilities and pulsations in lasers,” Prog. Opt. 25, 1–190 (1988).
[Crossref]

Marconi, M. C.

M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
[Crossref]

Marioni, M. A.

M. A. Marioni and A. A. Hnilo, “Self-starting of self mode-locking Ti:sapphire lasers. Description with a Poincaré map,” Opt. Commun. 147(1-3), 89–94 (1998).
[Crossref]

Moulton, P. F.

Narducci, L. M.

N. B. Abraham, P. Mandel, and L. M. Narducci, “Dynamical instabilities and pulsations in lasers,” Prog. Opt. 25, 1–190 (1988).
[Crossref]

Nizette, M.

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

Poloyko, I. G.

Radzewicz, C.

P. Wasylczyk and C. Radzewicz, “Design and Alignment Criteria for a Simple, Robust, Diode-Pumped Femtosecond Yb:KYW Oscillator,” Laser Phys. 19(1), 129–133 (2009).
[Crossref]

Ratajska-Gadomska, B.

Rudolph, W.

Sennaroglu, A.

Wasylczyk, P.

T. M. Kardaś, P. Wasylczyk, and W. Gadomski, “A low repetition rate, passively modelocked Ti:Sapphire oscillator,” Photon. Lett. Poland 1(3), 133–135 (2009).

P. Wasylczyk and C. Radzewicz, “Design and Alignment Criteria for a Simple, Robust, Diode-Pumped Femtosecond Yb:KYW Oscillator,” Laser Phys. 19(1), 129–133 (2009).
[Crossref]

Wei, M.-D.

Wu, H.-H.

Xing, Q.

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119(1-2), 113–116 (1995).
[Crossref]

Yoo, K. M.

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119(1-2), 113–116 (1995).
[Crossref]

Zhang, W.

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119(1-2), 113–116 (1995).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. (1)

P. Wasylczyk and C. Radzewicz, “Design and Alignment Criteria for a Simple, Robust, Diode-Pumped Femtosecond Yb:KYW Oscillator,” Laser Phys. 19(1), 129–133 (2009).
[Crossref]

Opt. Commun. (3)

Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119(1-2), 113–116 (1995).
[Crossref]

M. A. Marioni and A. A. Hnilo, “Self-starting of self mode-locking Ti:sapphire lasers. Description with a Poincaré map,” Opt. Commun. 147(1-3), 89–94 (1998).
[Crossref]

M. G. Kovalsky, A. A. Hnilo, A. Libertun, and M. C. Marconi, “Bistability inKerr lens mode-locked Ti:sapphire lasers,” Opt. Commun. 192(3-6), 333–338 (2001).
[Crossref]

Opt. Express (2)

Photon. Lett. Poland (1)

T. M. Kardaś, P. Wasylczyk, and W. Gadomski, “A low repetition rate, passively modelocked Ti:Sapphire oscillator,” Photon. Lett. Poland 1(3), 133–135 (2009).

Phys. Rev. A (2)

M. G. Kovalsky and A. A. Hnilo, “Different routes to chaos in the Ti:sapphire laser,” Phys. Rev. A 70(4), 043813 (2004).
[Crossref]

S. R. Bolton and M. R. Acton, “Quasiperiodic route to chaos in the Kerr-lens mode-locked Ti:sapphire laser,” Phys. Rev. A 62(6), 063803 (2000).
[Crossref]

Physica D (1)

T. Kolokolnikov, M. Nizette, T. Erneux, N. Joly, and S. Bielawski, “The Q-switching instability in passively model-locked lasers,” Physica D 219(1), 13–21 (2006).
[Crossref]

Prog. Opt. (1)

N. B. Abraham, P. Mandel, and L. M. Narducci, “Dynamical instabilities and pulsations in lasers,” Prog. Opt. 25, 1–190 (1988).
[Crossref]

Other (1)

“Recent Advances in Laser Dynamics: Control and Synchronization”, A. N. Pisarchik ed. (Research Signpost, Kerala, India, 2008)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: Ti:Sapphire oscillator (CM1, CM2 – concave mirrors, f = 50 mm, C – 5 mm Ti:Sapphire crystal, P1, P2 – fused silica prisms, M1, M2 – flat mirrors,, OC – 15% output coupler) with the cavity extended by a Herriott cell (MI, ME – injection and extraction flat mirrors, M – flat mirror, GVD = −40 fs2, CM concave mirror, f = 2000 mm, GVD = −40 fs2) and pulse diagnostics system (spectrometer, m – monochromator, PD1, PD2 – fast photodiodes, RF spectrum analyzer and oscilloscope).

Fig. 2
Fig. 2

Measured stability map of the extended cavity Ti:Sapphire laser operating in the VE beam profile configuration (0.23 mm from inner limit of the stability region) (a): CW – continuous wave, N – gauss-like spectra with CW peak, M – multiple pulse, B – broad spectra, P – square-like spectra. Also shown are sample spectra in the three regions: (b), (c), (d).

Fig. 3
Fig. 3

Recorded pulse train in the AM regime (a). AM period as a function of the laser pump power (b). Pulse trains in the AM period doubling regime (c). One of the pulse trains in the AM period doubling regime (c) recorded with the photodiode placed after the monohromator tuned to 758 nm (d).

Fig. 4
Fig. 4

Spectrally resolved pulse train measured in the AM regime. Pulse train profile is shown on the top and the integrated spectrum (red), compared with the averaged spectrum measured independently (black) on the right.

Fig. 6
Fig. 6

Same as Fig. 4 measured in the period doubling regime.

Fig. 5
Fig. 5

Recorded pulse trains of the AM in the chaotic regime (a) and one of its spectral components (centered at 758 nm) (b). Different, “stable-looking” pulse train in the chaotic regime (c) and one of its spectral components at 758 nm (d).

Fig. 7
Fig. 7

Measured RF spectra of the pulse train in the automodulation regime (a), automodulations with period doubling (b), and chaotic behavior of the automodulations (c). Display spans 1 MHz centered at 13.4 MHz.

Metrics