Abstract

Buried channel waveguides were fabricated by liquid phase epitaxial growth of a lattice-matched KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 film on a microstructured KY(WO4)2 substrate. Channels were transferred to the substrates by standard photolithography and Ar-ion milling. The bottom and sidewalls of the milled channels were smooth enough (rms roughness = 70 nm and 20 nm, respectively) to favour the epitaxial growth of the active layer without defects at the boundary of substrate/epitaxial layer. The refractive index contrast was sufficient to enable light confinement and guided modes with low scattering losses were observed at wavelengths between 1440 nm and 1640 nm. CW laser operation at 1840 nm at room temperature was observed with feedback provided only by Fresnel reflection at the end faces, with slope efficiencies of 4% and 9% for TE and TM polarizations, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
    [CrossRef]
  2. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
    [CrossRef]
  3. J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
    [CrossRef]
  4. A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
    [CrossRef]
  5. U. Griebner and H. Schönnagel, “Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide,” Opt. Lett. 24(11), 750–752 (1999).
    [CrossRef]
  6. M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992).
    [CrossRef]
  7. P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
    [CrossRef]
  8. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
    [CrossRef]
  9. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
    [CrossRef]
  10. P. Rogin and J. Hulliger, “Epitaxial Nd:YLF linear waveguide laser,” Opt. Lett. 22(22), 1701–1703 (1997).
    [CrossRef]
  11. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
    [CrossRef]
  12. P. M. Peters, D. S. Funk, A. P. Peskin, D. L. Veasey, N. A. Sanford, S. N. Houde-Walter, and J. S. Hayden, “Ion-exchanged waveguide lasers in Er3+/Yb3+ codoped silicate glass,” Appl. Opt. 38(33), 6879–6886 (1999).
    [CrossRef]
  13. P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
    [CrossRef]
  14. A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
    [CrossRef] [PubMed]
  15. H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb(3+):(Gd,Lu)(2)O(3) channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009).
    [CrossRef] [PubMed]
  16. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
    [CrossRef] [PubMed]
  17. F. M. Bain, A. A. Lagatsky, S. V. Kurilchick, V. E. Kisel, S. A. Guretsky, A. M. Luginets, N. A. Kalanda, I. M. Kolesova, N. V. Kuleshov, W. Sibbett, and C. T. Brown, “Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser,” Opt. Express 17(3), 1666–1670 (2009).
    [CrossRef] [PubMed]
  18. S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
    [CrossRef] [PubMed]
  19. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
    [CrossRef]
  20. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+) channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
    [CrossRef] [PubMed]
  21. W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
    [CrossRef]
  22. W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
    [CrossRef]
  23. W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
    [CrossRef]
  24. O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
    [CrossRef]

2010 (3)

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+) channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (1)

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

2003 (2)

J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
[CrossRef]

2002 (1)

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
[CrossRef]

1999 (3)

1997 (3)

P. Rogin and J. Hulliger, “Epitaxial Nd:YLF linear waveguide laser,” Opt. Lett. 22(22), 1701–1703 (1997).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

1996 (1)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

1992 (2)

M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992).
[CrossRef]

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

Aguiló, M.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Aravazhi, S.

Bain, F. M.

Becker, P.

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

Bhutta, T.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[CrossRef]

Bolaños, W.

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Borca, C. N.

Borel, C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Bradley, J. D.

Bradley, J. D. B.

Brinkmann, R.

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

Brown, C. T.

Brown, C. T. A.

Bulovic, V.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Cantelar, E.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Carvajal, J. J.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Chambaz, B.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Cinta Pujol, M.

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

Cussó, F.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Daran, E.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[CrossRef]

de Sandro, J. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

Díaz, F.

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Dinand, M.

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

Donati, S.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
[CrossRef]

Ferrand, B.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Forrest, S. R.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Funk, D. S.

Gardillou, F.

Geraghty, D. F.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
[CrossRef]

Geskus, D.

Giuliani, G.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
[CrossRef]

Griebner, U.

Grivas, C.

Guretsky, S. A.

Hanna, D. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Hayden, J. S.

Heinrich, S.

Hempstead, M.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992).
[CrossRef]

Honkanen, S.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
[CrossRef]

Houde-Walter, S. N.

Huber, G.

Hulliger, J.

Jones, J. K.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

Kahn, A.

Kalanda, N. A.

Kar, A. K.

Kisel, V. E.

Kolesova, I. M.

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Kühn, H.

Kuleshov, N. V.

Kurilchick, S. V.

Lagatsky, A. A.

Laybourn, P. J. R.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
[CrossRef]

Li, C.

J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[CrossRef]

Lifante, G.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Luginets, A. M.

Mackenzie, J. I.

J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[CrossRef]

Madasamy, P.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
[CrossRef]

Massons, J.

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Mateos, X.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[CrossRef] [PubMed]

Pasiskevicius, V.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

Pernas, P. L.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Peskin, A. P.

Petermann, K.

Peters, P. M.

Petrov, V.

Peyghambarian, N.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
[CrossRef]

Pollnau, M.

Psaila, N. D.

Pujol, M. C.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Rameix, A.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Reekie, L.

M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992).
[CrossRef]

Rivier, S.

Rogin, P.

Romanyuk, Y. E.

Sanford, N. A.

Sanz-García, J. A.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Schönnagel, H.

Serrano, C.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[CrossRef]

Sheperd, D. P.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Shepherd, D.

J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[CrossRef]

Shepherd, D. P.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[CrossRef]

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

Sibbett, W.

Silvestre, O.

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Sohler, W.

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

Solé, R.

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Sorel, M.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
[CrossRef]

Suche, H.

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

Thilmann, N.

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

Thomson, R. R.

Tropper, A. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

Veasey, D. L.

Wang, J.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

Warburton, T. J.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Wilkinson, J. S.

M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992).
[CrossRef]

Wörhoff, K.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002).
[CrossRef]

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003).
[CrossRef]

Cryst. Growth Des. (1)

W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009).
[CrossRef]

Electron. Lett. (1)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[CrossRef]

IEEE Photon. J. (1)

W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992).
[CrossRef]

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996).
[CrossRef]

Mater. Sci. Eng. B (1)

O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008).
[CrossRef]

Nature (1)

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997).
[CrossRef]

Opt. Commun. (1)

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (1)

W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

b –oriented KY(WO4)2 substrate used for microstructuring and epitaxial growth.

Fig. 2
Fig. 2

Etch depth by Ar- ion milling as a function of etch time for KY(WO4)2 and photoresist.

Fig. 3
Fig. 3

(a) Topography, and (b) extended profiles of some typical channels milled on KY(WO4)2 substrate.

Fig. 4
Fig. 4

Cross-sectional views of (a) epitaxial growth over microstructured channels in the KY(WO4)2 substrate, and (b) KY(WO4)2/KY0.58Gd0.22Lu0.17Tm0.03(WO4)2/KY(WO4)2 buried rib waveguides. Inset shows the Tm3+ luminescence map taken with a confocal microscope.

Fig. 5
Fig. 5

Mode intensity distribution of a KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide taken at 1640 nm.

Fig. 6
Fig. 6

CW output power versus pump power at room temperature of a KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide for two different polarizations without mirrors: (a) TE pump polarization, with electric field parallel to Nm optical direction, and (b) TM pump polarization with magnetic field parallel to Np optical direction. Insets show the emission spectra in the range 1300 nm – 1900 nm.

Tables (1)

Tables Icon

Table 1 Refractive indices of the substrate and a 12 μm thick KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 guiding layer measured by the prism-film coupling technique

Metrics