Abstract

The potential of random metal-dielectric nanocomposites as constituent elements of metamaterial structures is explored. Classical effective medium theories indicate that these composites can provide a tunable negative dielectric function with small absorption losses. However, the tuning potential of real random composites is significantly lower than the one predicted by classical theories, due to the underestimation of the spectral range where topological resonances take place. This result suggests that a random mixture consisting of a metal matrix with embedded isolated dielectric inclusions is a promising design guideline for the fabrication of tunable composites for metamaterial purposes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).
  2. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
    [CrossRef] [PubMed]
  3. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
    [CrossRef]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
    [CrossRef] [PubMed]
  6. Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
    [CrossRef]
  7. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
    [CrossRef]
  8. W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
    [CrossRef]
  9. L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
    [CrossRef]
  10. X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites,” J. Opt. Soc. Am. A 26(12), 2521–2525 (2009).
    [CrossRef]
  11. L. Shi and L. Gao, “Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77(19), 195121 (2008).
    [CrossRef]
  12. Y. Xiong, Z. W. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
    [CrossRef] [PubMed]
  13. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14(17), 7872–7877 (2006).
    [CrossRef] [PubMed]
  14. L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
    [CrossRef]
  15. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  16. H. Wallén, H. Kettunen, and A. Sihvola, “Mixing Formulas and Plasmonic Composites,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds. (Springer Netherlands, 2009), pp. 91–102.
  17. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–679 (1935).
    [CrossRef]
  18. J. C. M. Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London Sect. A 203(359-371), 385–420 (1904).
    [CrossRef]
  19. H. Wallén, H. Kettunen, and A. Sihvola, “Composite near-field superlens design using mixing formulas and simulations,” Metamaterials (Amst.) 3(3-4), 129–139 (2009).
    [CrossRef]
  20. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, 2000).
  21. U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
    [CrossRef]
  22. R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
    [CrossRef]
  23. W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
    [CrossRef]
  24. S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
    [CrossRef]
  25. D. J. Bergman, “The dielectric constant of a composite material–A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
    [CrossRef]
  26. W. Theiss, “The use of effective medium theories in optical spectroscopy,” in Festkorperprobleme - Advances in Solid State Physics 33(1994), pp. 149–176.
  27. J. Sancho-Parramon, S. Bosch, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Effective medium models for metal-dielectric composites: an analysis based on the spectral density theory,” in Advances in Optical Thin Films II (SPIE, Jena, Germany, 2005), pp. 596320–596311.
  28. E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).
  29. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  30. J. Sturm, P. Grosse, and W. Theiss, “Effective dielectric functions of alkali-halide composites and their spectral representation,” Z. Phys. B: Condens. Matter 83(3), 361–365 (1991).
    [CrossRef]
  31. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, New York, 1995).
  32. J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20(23), 235706 (2009).
    [CrossRef] [PubMed]
  33. R. R. Singer, A. Leitner, and F. R. Aussenegg, “Structure analysis and models for optical constants of discontinous metallic silver films,” J. Opt. Soc. Am. B 12(2), 220–228 (1995).
    [CrossRef]
  34. R. K. Roy, S. Bandyopadhyaya, and A. K. Pal, “Surface plasmon resonance in nanocrystalline silver in a ZnO matrix,” Eur. Phys. J. B 39(4), 491–498 (2004).
    [CrossRef]
  35. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002).
    [CrossRef]
  36. M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
    [CrossRef]
  37. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
    [CrossRef]
  38. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
    [CrossRef]
  39. A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
    [CrossRef]
  40. A. R. Day and M. F. Thorpe, “The spectral function of composites: the inverse problem,” J. Phys. Condens. Matter 11(12), 2551–2568 (1999).
    [CrossRef]
  41. A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
    [CrossRef] [PubMed]
  42. K. Hinsen and B. U. Felderhof, “Dielectric constant of a suspension of uniform spheres,” Phys. Rev. B Condens. Matter 46(20), 12955–12963 (1992).
    [CrossRef] [PubMed]
  43. L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D Appl. Phys. 35(3), 267–271 (2002).
    [CrossRef]
  44. W. Theiss, S. Henkel, and M. Arntzen, “Connecting microscopic and macroscopic properties of porous-media - choosing appropriate effective-medium concepts,” Thin Solid Films 255(1-2), 177–180 (1995).
    [CrossRef]
  45. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29(3-4), 91–192 (1997).
    [CrossRef]
  46. H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
    [CrossRef]
  47. S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
  48. F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
    [CrossRef]
  49. T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
    [CrossRef] [PubMed]
  50. T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
    [CrossRef] [PubMed]

2010 (7)

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
[CrossRef]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[CrossRef]

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

2009 (6)

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20(23), 235706 (2009).
[CrossRef] [PubMed]

H. Wallén, H. Kettunen, and A. Sihvola, “Composite near-field superlens design using mixing formulas and simulations,” Metamaterials (Amst.) 3(3-4), 129–139 (2009).
[CrossRef]

Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
[CrossRef]

X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites,” J. Opt. Soc. Am. A 26(12), 2521–2525 (2009).
[CrossRef]

2008 (4)

L. Shi and L. Gao, “Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77(19), 195121 (2008).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

2007 (4)

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
[CrossRef]

Y. Xiong, Z. W. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

2004 (1)

R. K. Roy, S. Bandyopadhyaya, and A. K. Pal, “Surface plasmon resonance in nanocrystalline silver in a ZnO matrix,” Eur. Phys. J. B 39(4), 491–498 (2004).
[CrossRef]

2002 (2)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002).
[CrossRef]

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D Appl. Phys. 35(3), 267–271 (2002).
[CrossRef]

2000 (3)

A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
[CrossRef] [PubMed]

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

A. R. Day and M. F. Thorpe, “The spectral function of composites: the inverse problem,” J. Phys. Condens. Matter 11(12), 2551–2568 (1999).
[CrossRef]

1997 (1)

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29(3-4), 91–192 (1997).
[CrossRef]

1996 (1)

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

1995 (2)

W. Theiss, S. Henkel, and M. Arntzen, “Connecting microscopic and macroscopic properties of porous-media - choosing appropriate effective-medium concepts,” Thin Solid Films 255(1-2), 177–180 (1995).
[CrossRef]

R. R. Singer, A. Leitner, and F. R. Aussenegg, “Structure analysis and models for optical constants of discontinous metallic silver films,” J. Opt. Soc. Am. B 12(2), 220–228 (1995).
[CrossRef]

1992 (1)

K. Hinsen and B. U. Felderhof, “Dielectric constant of a suspension of uniform spheres,” Phys. Rev. B Condens. Matter 46(20), 12955–12963 (1992).
[CrossRef] [PubMed]

1991 (1)

J. Sturm, P. Grosse, and W. Theiss, “Effective dielectric functions of alkali-halide composites and their spectral representation,” Z. Phys. B: Condens. Matter 83(3), 361–365 (1991).
[CrossRef]

1978 (1)

D. J. Bergman, “The dielectric constant of a composite material–A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–679 (1935).
[CrossRef]

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London Sect. A 203(359-371), 385–420 (1904).
[CrossRef]

Abdelsalem, M.

Arntzen, M.

W. Theiss, S. Henkel, and M. Arntzen, “Connecting microscopic and macroscopic properties of porous-media - choosing appropriate effective-medium concepts,” Thin Solid Films 255(1-2), 177–180 (1995).
[CrossRef]

Atwater, H. A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Aussenegg, F. R.

Baker, J. H.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Bandyopadhyaya, S.

R. K. Roy, S. Bandyopadhyaya, and A. K. Pal, “Surface plasmon resonance in nanocrystalline silver in a ZnO matrix,” Eur. Phys. J. B 39(4), 491–498 (2004).
[CrossRef]

Barborini, E.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Barnes, T. M.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

Bartlett, P. N.

Baumberg, J. J.

Bennett, S. P.

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Bergman, D. J.

D. J. Bergman, “The dielectric constant of a composite material–A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[CrossRef]

Bernstorff, S.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Bisio, F.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Boltasseva, A.

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Bosch, S.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–679 (1935).
[CrossRef]

Burgos, S. P.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cai, W. S.

W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Canepa, M.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Canillas, A.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
[CrossRef]

Cavalleri, O.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Chen, W.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
[CrossRef]

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Chettiar, U.

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Convey, D.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Day, A. R.

A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
[CrossRef] [PubMed]

A. R. Day and M. F. Thorpe, “The spectral function of composites: the inverse problem,” J. Phys. Condens. Matter 11(12), 2551–2568 (1999).
[CrossRef]

de Vries, A. J.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Drachev, V.

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[CrossRef]

Dubcek, P.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Durant, S.

Dyer, M. J.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002).
[CrossRef]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Felderhof, B. U.

K. Hinsen and B. U. Felderhof, “Dielectric constant of a suspension of uniform spheres,” Phys. Rev. B Condens. Matter 46(20), 12955–12963 (1992).
[CrossRef] [PubMed]

Ferré-Borrull, J.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
[CrossRef]

Franchi, M.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Friedman, A. L.

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Gao, L.

L. Shi and L. Gao, “Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77(19), 195121 (2008).
[CrossRef]

L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
[CrossRef]

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D Appl. Phys. 35(3), 267–271 (2002).
[CrossRef]

García de Abajo, F. J.

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London Sect. A 203(359-371), 385–420 (1904).
[CrossRef]

Genov, D. A.

W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[CrossRef]

Grant, A. R.

A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
[CrossRef] [PubMed]

Grosse, P.

J. Sturm, P. Grosse, and W. Theiss, “Effective dielectric functions of alkali-halide composites and their spectral representation,” Z. Phys. B: Condens. Matter 83(3), 361–365 (1991).
[CrossRef]

Gu, J. Z.

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D Appl. Phys. 35(3), 267–271 (2002).
[CrossRef]

Gupta, R.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002).
[CrossRef]

Haase, A.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

He, S.

L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
[CrossRef]

Heiman, D.

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Henkel, S.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

W. Theiss, S. Henkel, and M. Arntzen, “Connecting microscopic and macroscopic properties of porous-media - choosing appropriate effective-medium concepts,” Thin Solid Films 255(1-2), 177–180 (1995).
[CrossRef]

Hilfiker, J. N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
[CrossRef] [PubMed]

Hinsen, K.

K. Hinsen and B. U. Felderhof, “Dielectric constant of a suspension of uniform spheres,” Phys. Rev. B Condens. Matter 46(20), 12955–12963 (1992).
[CrossRef] [PubMed]

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[CrossRef]

Hvam, J.

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Jakopic, G.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kelf, T. A.

Kettunen, H.

H. Wallén, H. Kettunen, and A. Sihvola, “Composite near-field superlens design using mixing formulas and simulations,” Metamaterials (Amst.) 3(3-4), 129–139 (2009).
[CrossRef]

Kildishev, A.

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Kildishev, A. V.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
[CrossRef]

Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14(17), 7872–7877 (2006).
[CrossRef] [PubMed]

Klar, T. A.

Kooij, E. S.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
[CrossRef] [PubMed]

Kristensen, A.

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Lee, H.

Leinfellner, N.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
[CrossRef]

Leitner, A.

Li, B.

L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
[CrossRef]

Li, X.

Liu, Z.

Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
[CrossRef]

Liu, Z. W.

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Lu, W. T.

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Mattera, L.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Menon, L.

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Mewe, A. A.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

Michalke, W.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

Muller, J.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Neff, H.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

Nielsen, R.

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Nyga, P.

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

Pal, A. K.

R. K. Roy, S. Bandyopadhyaya, and A. K. Pal, “Surface plasmon resonance in nanocrystalline silver in a ZnO matrix,” Eur. Phys. J. B 39(4), 491–498 (2004).
[CrossRef]

Palombo, M.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Pavlovic, M.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Poelsema, B.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

Polman, A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Popov, V. V.

Prato, M.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Ratz, P.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

Reilly, T. H.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

Rowlen, K. L.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

Roy, R. K.

R. K. Roy, S. Bandyopadhyaya, and A. K. Pal, “Surface plasmon resonance in nanocrystalline silver in a ZnO matrix,” Eur. Phys. J. B 39(4), 491–498 (2004).
[CrossRef]

Sancho-Parramon, J.

J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20(23), 235706 (2009).
[CrossRef] [PubMed]

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Sass, J. K.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

Shalaev, V.

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Shalaev, V. M.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14(17), 7872–7877 (2006).
[CrossRef] [PubMed]

W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Shi, L.

L. Shi and L. Gao, “Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77(19), 195121 (2008).
[CrossRef]

L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
[CrossRef]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
[CrossRef] [PubMed]

Sievers, A. J.

A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
[CrossRef] [PubMed]

Sihvola, A.

H. Wallén, H. Kettunen, and A. Sihvola, “Composite near-field superlens design using mixing formulas and simulations,” Metamaterials (Amst.) 3(3-4), 129–139 (2009).
[CrossRef]

Singer, R. R.

Singh, N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Smith, S. M.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Sridhar, S.

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Steinbeiss, E.

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

Sturm, J.

J. Sturm, P. Grosse, and W. Theiss, “Effective dielectric functions of alkali-halide composites and their spectral representation,” Z. Phys. B: Condens. Matter 83(3), 361–365 (1991).
[CrossRef]

Sugawara, Y.

Sun, C.

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
[CrossRef] [PubMed]

Tenent, R. C.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

Teperik, T. V.

Theiss, W.

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29(3-4), 91–192 (1997).
[CrossRef]

W. Theiss, S. Henkel, and M. Arntzen, “Connecting microscopic and macroscopic properties of porous-media - choosing appropriate effective-medium concepts,” Thin Solid Films 255(1-2), 177–180 (1995).
[CrossRef]

J. Sturm, P. Grosse, and W. Theiss, “Effective dielectric functions of alkali-halide composites and their spectral representation,” Z. Phys. B: Condens. Matter 83(3), 361–365 (1991).
[CrossRef]

Thoreson, M.

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Thoreson, M. D.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
[CrossRef]

Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
[CrossRef]

Thorpe, M. F.

A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
[CrossRef] [PubMed]

A. R. Day and M. F. Thorpe, “The spectral function of composites: the inverse problem,” J. Phys. Condens. Matter 11(12), 2551–2568 (1999).
[CrossRef]

Tiwald, T.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Tompkins, H. G.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Turkovic, A.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
[CrossRef] [PubMed]

van de Lagemaat, J.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

Vinati, S.

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

Wallén, H.

H. Wallén, H. Kettunen, and A. Sihvola, “Composite near-field superlens design using mixing formulas and simulations,” Metamaterials (Amst.) 3(3-4), 129–139 (2009).
[CrossRef]

Weimer, W. A.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002).
[CrossRef]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Wormeester, H.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

Xiong, Y.

Zhang, X.

Zhuang, F.

Zorc, H.

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

ACS Nano (1)

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[CrossRef] [PubMed]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(8), 665–679 (1935).
[CrossRef]

Appl. Phys. B (2)

U. Chettiar, P. Nyga, M. Thoreson, A. Kildishev, V. Drachev, and V. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[CrossRef]

R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, and S. Sridhar, “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93(12), 123117 (2008).
[CrossRef]

Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009).
[CrossRef]

Eur. Phys. J. B (1)

R. K. Roy, S. Bandyopadhyaya, and A. K. Pal, “Surface plasmon resonance in nanocrystalline silver in a ZnO matrix,” Eur. Phys. J. B 39(4), 491–498 (2004).
[CrossRef]

J. Appl. Phys. (3)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264–5271 (2002).
[CrossRef]

H. Neff, S. Henkel, J. K. Sass, E. Steinbeiss, P. Ratz, J. Muller, and W. Michalke, “Optical properties of ultrarough silver films on silicon,” J. Appl. Phys. 80(2), 1058–1062 (1996).
[CrossRef]

A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703–053710 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

A. R. Day and M. F. Thorpe, “The spectral function of composites: the inverse problem,” J. Phys. Condens. Matter 11(12), 2551–2568 (1999).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D Appl. Phys. 35(3), 267–271 (2002).
[CrossRef]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Laser Phys. Lett. (1)

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett. 7(9), 677–684 (2010).
[CrossRef]

Metamaterials (Amst.) (2)

H. Wallén, H. Kettunen, and A. Sihvola, “Composite near-field superlens design using mixing formulas and simulations,” Metamaterials (Amst.) 3(3-4), 129–139 (2009).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Nanotechnology (1)

J. Sancho-Parramon, “Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confinement and interparticle interaction effects,” Nanotechnology 20(23), 235706 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Opt. Express (3)

Philos. Trans. R. Soc. London Sect. A (1)

J. C. M. Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London Sect. A 203(359-371), 385–420 (1904).
[CrossRef]

Phys. Rep. (1)

D. J. Bergman, “The dielectric constant of a composite material–A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[CrossRef]

Phys. Rev. B (6)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

L. Shi and L. Gao, “Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites,” Phys. Rev. B 77(19), 195121 (2008).
[CrossRef]

W. S. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

L. Shi, L. Gao, S. He, and B. Li, “Superlens from metal-dielectric composites of nonspherical particles,” Phys. Rev. B 76(4), 045116 (2007).
[CrossRef]

F. Bisio, M. Palombo, M. Prato, O. Cavalleri, E. Barborini, S. Vinati, M. Franchi, L. Mattera, and M. Canepa, “Optical properties of cluster-assembled nanoporous gold films,” Phys. Rev. B 80(20), 205428 (2009).
[CrossRef]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

K. Hinsen and B. U. Felderhof, “Dielectric constant of a suspension of uniform spheres,” Phys. Rev. B Condens. Matter 46(20), 12955–12963 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. R. Day, A. R. Grant, A. J. Sievers, and M. F. Thorpe, “Spectral function of composites from reflectivity measurements,” Phys. Rev. Lett. 84(9), 1978–1981 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595–1595 (2006).
[CrossRef] [PubMed]

Surf. Sci. (1)

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453(1-3), 9–17 (2000).
[CrossRef]

Surf. Sci. Rep. (1)

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29(3-4), 91–192 (1997).
[CrossRef]

Thin Solid Films (2)

W. Theiss, S. Henkel, and M. Arntzen, “Connecting microscopic and macroscopic properties of porous-media - choosing appropriate effective-medium concepts,” Thin Solid Films 255(1-2), 177–180 (1995).
[CrossRef]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[CrossRef]

Vacuum (1)

M. Lončarić, J. Sancho-Parramon, M. Pavlovic, H. Zorc, P. Dubcek, A. Turkovic, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[CrossRef]

Z. Phys. B: Condens. Matter (1)

J. Sturm, P. Grosse, and W. Theiss, “Effective dielectric functions of alkali-halide composites and their spectral representation,” Z. Phys. B: Condens. Matter 83(3), 361–365 (1991).
[CrossRef]

Other (8)

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, New York, 1995).

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, 2000).

W. Theiss, “The use of effective medium theories in optical spectroscopy,” in Festkorperprobleme - Advances in Solid State Physics 33(1994), pp. 149–176.

J. Sancho-Parramon, S. Bosch, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Effective medium models for metal-dielectric composites: an analysis based on the spectral density theory,” in Advances in Optical Thin Films II (SPIE, Jena, Germany, 2005), pp. 596320–596311.

E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).

H. Wallén, H. Kettunen, and A. Sihvola, “Mixing Formulas and Plasmonic Composites,” in Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, S. Zouhdi, A. Sihvola, and A. P. Vinogradov, eds. (Springer Netherlands, 2009), pp. 91–102.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Real and imaginary part of parameter t = ε1 /(ε1 ε2 ) for SiO2-Ag and SiC-Ag mixtures.

Fig. 2
Fig. 2

Effective dielectric function of a dielectric–Ag composite computed with the Maxwell-Garnett formula: (a, c) real part, (b, d) logarithm of imaginary part. The dielectric matrix is SiO2 (a, b) and SiC (c, d). The dashed line corresponds to the matching condition for the composite operating as a near-field superlens in a SiC host.

Fig. 3
Fig. 3

Effective dielectric function of a SiO2–Ag composite computed with the Bruggeman formula: (a) real part, (b) logarithm of imaginary part. The dashed line corresponds to the matching condition for the composite operating as a near-field superlens in a SiC host.

Fig. 4
Fig. 4

(a) Real (solid) and imaginary (dashed) part of the effective dielectric function of dielectric-Ag composites using the Maxwell-Garnett and Bruggeman theories. (b) Quality factor Eq. (8) for a dielectric-Ag composite superlens matching a SiC host. In both figures the composites are: SiO2-Ag using the Maxwell-Garnett theory (red), SiC–Ag using the Maxwell-Garnett theory (green), and SiO2–Ag using the Bruggeman theory (blue).

Fig. 5
Fig. 5

Sketch of the fabricated samples (left) and model for extraction of effective dielectric function and thickness of the Ag-SiO2 composite from optical measurements (right).

Fig. 6
Fig. 6

Experimental ellipsometry and transmittance measurements (symbols) and model simulation (solid lines) for a SiO2-Ag composite with nominal Ag mass thickness of 8 nm deposited onto a pre-heated substrate.

Fig. 7
Fig. 7

Real (a, c) and imaginary (b, d) part of the effective dielectric function of SiO2-Ag composites with different Ag mass thickness (indicated in nm) deposited onto pre-heated (a, b) and unheated (c, d) substrates. The number in brackets is the ratio between nominal thickness and effective thickness obtained by ellipsometry. Solid lines are best-fits obtained by numerical inversion of the spectral density function. Effective dielectric functions of SiO2-Ag composites computed using the Maxwell-Garnett (a, b) and Bruggeman (c, d) theories at two different filling fractions are shown (gray dashed line) for comparison.

Fig. 8
Fig. 8

Spectral density function of SiO2-Ag composites deposited onto pre-heated (a) and unheated (b) substrates obtained by numerical inversion of the effective dielectric function.

Fig. 9
Fig. 9

Effective dielectric function of Ag-SiO2 composite (metal matrix with dielectric inclusions) computed using the spectral densities extracted from the experimental effective dielectric function of fabricated SiO2-Ag composites [Fig. 8(a)]. The solid lines are simulations using the Maxwell-Garnett expression.

Fig. 10
Fig. 10

Effective dielectric function of a Ag-SiO2 composite computed with the Maxwell-Garnett formula: (a, b) and the numerically calculated spectral density for a random sytem of polarizable spheres (c, d): real part (a, c) and logarithm of imaginary part (b, d). The dashed line corresponds to the condition Re(εeff ) = - Re(εeff ).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε eff ε 1 ε eff + 2 ε 1 = p ε 2 ε 1 ε 2 + 2 ε 1 ,
p ε 2 ε eff ε 2 + 2 ε eff + ( 1 p ) ε 1 ε eff ε 1 + 2 ε eff = 0.
ε eff = ε 1 ( 1 p 0 1 g ( u , p ) t u d u ) ,
ε eff = p g o ( p ) ε 2 + ( 1 p g o ( p ) ) ε 1 ε 1 p 0 1 g c o n t ( u , p ) t u d u ,
g M G ( u , p ) = δ ( u 1 p 3 ) .
g B G ( u , p ) = 3 p 1 2 p δ + ( u ) θ ( 3 p 1 ) + 3 4 π p u ( u u L ) ( u R u ) θ ( u u L ) θ ( u R u ) ,
u R / L = 1 3 ( 1 + p ± 2 ( 2 p 2 p 2 ) ) ,
Q F = ln ( I m ( ε eff ) 2 R e ( ε eff ) ) 2 π ,

Metrics