Abstract

This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. J. Shen, L. W. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators, A 97–98, 428–433 (2002).
  2. B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004).
    [CrossRef]
  3. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).
    [CrossRef] [PubMed]
  4. R. Guo, S. Z. Xiao, X. M. Zhai, J. W. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
    [CrossRef] [PubMed]
  5. F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
    [CrossRef]
  6. L. T. Jiang, T. C. Huang, C. R. Chiu, C. Y. Chang, and S. Y. Yang, “Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist,” Opt. Express 15(19), 12088–12094 (2007).
    [CrossRef] [PubMed]
  7. T. C. Huang, B. D. Chan, J. K. Ciou, and S. Y. Yang, “Fabrication of microlens arrays using a CO2-assisted embossing technique,” J. Micromech. Microeng. 19(1), 015018 (2009).
    [CrossRef]
  8. S. M. Kim and S. N. Kang, “Replication qualities and optical properties of UV-molded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
    [CrossRef]
  9. H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
    [CrossRef]

2010 (1)

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

2009 (2)

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

T. C. Huang, B. D. Chan, J. K. Ciou, and S. Y. Yang, “Fabrication of microlens arrays using a CO2-assisted embossing technique,” J. Micromech. Microeng. 19(1), 015018 (2009).
[CrossRef]

2007 (1)

2006 (1)

2004 (1)

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004).
[CrossRef]

2003 (2)

S. M. Kim and S. N. Kang, “Replication qualities and optical properties of UV-molded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).
[CrossRef] [PubMed]

2002 (1)

X. J. Shen, L. W. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators, A 97–98, 428–433 (2002).

Bu, J.

Chan, B. D.

T. C. Huang, B. D. Chan, J. K. Ciou, and S. Y. Yang, “Fabrication of microlens arrays using a CO2-assisted embossing technique,” J. Micromech. Microeng. 19(1), 015018 (2009).
[CrossRef]

Chang, C. Y.

Cheng, H. C.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Chiu, C. R.

Ciou, J. K.

T. C. Huang, B. D. Chan, J. K. Ciou, and S. Y. Yang, “Fabrication of microlens arrays using a CO2-assisted embossing technique,” J. Micromech. Microeng. 19(1), 015018 (2009).
[CrossRef]

Coppola, S.

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

Ferraro, P.

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

Guo, R.

He, M.

Hu, Y. H.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Huang, C. F.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Huang, T. C.

Huang, W.

Jiang, L. T.

Kang, S. N.

S. M. Kim and S. N. Kang, “Replication qualities and optical properties of UV-molded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Kim, D. S.

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004).
[CrossRef]

Kim, S. M.

S. M. Kim and S. N. Kang, “Replication qualities and optical properties of UV-molded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Kwon, T. H.

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004).
[CrossRef]

Lee, B. K.

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004).
[CrossRef]

Li, J. W.

Lin, L.

X. J. Shen, L. W. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators, A 97–98, 428–433 (2002).

Lin, Y.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Merola, F.

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

Ngo, N. Q.

Pan, L. W.

X. J. Shen, L. W. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators, A 97–98, 428–433 (2002).

Paturzo, M.

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

Shen, D. Y.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Shen, X. J.

X. J. Shen, L. W. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators, A 97–98, 428–433 (2002).

Shen, Y. K.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Tao, S. H.

Vespini, V.

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

Wang, C. H.

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Xia, A.

Xiao, S. Z.

Yang, S. Y.

Yuan, X. C.

Zhai, X. M.

J. Micromech. Microeng. (2)

F. Merola, M. Paturzo, S. Coppola, V. Vespini, and P. Ferraro, “Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography,” J. Micromech. Microeng. 19(12), 125006 (2009).
[CrossRef]

T. C. Huang, B. D. Chan, J. K. Ciou, and S. Y. Yang, “Fabrication of microlens arrays using a CO2-assisted embossing technique,” J. Micromech. Microeng. 19(1), 015018 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. M. Kim and S. N. Kang, “Replication qualities and optical properties of UV-molded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Microsyst. Technol. (1)

B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004).
[CrossRef]

Opt. Express (3)

Polym. Adv. Technol. (1)

H. C. Cheng, C. H. Wang, C. F. Huang, Y. K. Shen, Y. Lin, D. Y. Shen, and Y. H. Hu, “Micro fabrication of microlens arrays by micro dispensing,” Polym. Adv. Technol. 21(9), 632–639 (2010).
[CrossRef]

Sens. Actuators, A (1)

X. J. Shen, L. W. Pan, and L. Lin, “Microplastic embossing process: experimental and theoretical characterizations,” Sens. Actuators, A 97–98, 428–433 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

The dimensions of microlens arrays.

Fig. 2
Fig. 2

Micro-hole fabrication.

Fig. 3
Fig. 3

The fabrication of microlens arrays master and Ni mold insert.

Fig. 4
Fig. 4

CCD image of Ni mold insert.

Fig. 5
Fig. 5

CCD image of molded microlens arrays.

Fig. 6
Fig. 6

Measurement points of molded microlens arrays.

Fig. 7
Fig. 7

The CCD image of optical distribution at the screen.

Fig. 8
Fig. 8

The brightness distribution related to the pixel point.

Fig. 9
Fig. 9

The brightness field for different mold temperatures on μIM. (a) Mold temp. = 100°C (b) Mold temp. = 120°C.

Fig. 10
Fig. 10

The brightness field for different melt temperatures on μIM. (a)Melt temp. = 300°C (b) Melt temp. = 320°C.

Fig. 11
Fig. 11

The brightness field for different injection speeds on μIM. (a)Injection speed = 160mm/s (b) Injection speed = 200mm/s.

Fig. 12
Fig. 12

The brightness field for different packing pressures on μIM. (a)Packing pressure = 160MPa (b)Packing pressure = 200MPa.

Fig. 13
Fig. 13

The brightness field for different mold temperatures on μICM. (a)Mold temp. = 100°C (b)Mold temp. = 120°C.

Fig. 14
Fig. 14

The brightness field for different melt temperatures on μICM. (a)Melt temp. = 300°C, (b)Melt temp. = 320°C.

Fig. 15
Fig. 15

The brightness field for different injection speeds on μICM. (a)Injection speed = 160mm/s (b)Injection speed = 200mm/s.

Fig. 16
Fig. 16

The brightness field for different compression speeds on μICM. (a)Compression speed = 8mm/s (b)Compression speed = 24mm/s.

Tables (1)

Tables Icon

Table 1 Parameters and levels selected in the main experiment. (μIM/μICM)

Metrics