Abstract

The optical properties of India ink, an absorber often used in preparation of tissue simulating phantoms, have been investigated at visible and near infrared wavelengths. The extinction coefficient has been obtained from measurements of collimated transmittance and from spectrophotometric measurements, the absorption coefficient from multidistance measurements of fluence rate in a diffusive infinite medium with small concentrations of added ink. Measurements have been carried out on samples of India ink from five different brands, and for some brands also from different batches. As also reported in previously published papers the results we have obtained showed large inter-brand and inter-batch variations for both the absorption and the extinction coefficient. On the contrary, our results showed small variations for the ratio between the absorption and the extinction coefficient. The albedo is therefore similar for all samples: The values averaged over all samples investigated were 0.161, 0.115, and 0.115 at λ = 632.8, 751, and 833 nm respectively, with maximum deviations of 0.044, 0.019, and 0.035. These results indicate that, using the values we have obtained for the albedo, it should be possible to obtain with uncertainty smaller than about 4% the absorption coefficient of a sample of unknown ink from simple measurements of extinction coefficient. A similar accuracy is not easily obtained with the complicated procedures necessary for measurements of absorption coefficient.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Flock, M. Patterson, and B. Wilson, “Monte Carlo modeling of light propagation in highly scattering tissues–II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
    [Crossref] [PubMed]
  2. U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
    [Crossref] [PubMed]
  3. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
    [Crossref] [PubMed]
  4. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
    [Crossref]
  5. Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
    [Crossref] [PubMed]
  6. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
    [Crossref] [PubMed]
  7. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
    [Crossref] [PubMed]
  8. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [Crossref] [PubMed]
  9. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
    [Crossref] [PubMed]
  10. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
    [Crossref]
  11. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [Crossref] [PubMed]
  12. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: Towards a Reference Standard for Diffusive Media,” Submitted
  13. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [Crossref] [PubMed]
  14. D. Royston, R. Poston, and S. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J.Biomed. Opt. 1, 110–116 (1996).
    [Crossref]
  15. H. Xu and M. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485–6501 (2006).
    [Crossref] [PubMed]
  16. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15, 486–500 (2007).
    [Crossref] [PubMed]
  17. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15, 6589–6604 (2007).
    [Crossref] [PubMed]
  18. T. R. Wagner, W. G. Houf, and F. P. Incropera, “Radiative property measurements for India ink suspensions of varying concentration,” Solar Energy 25, 549–554 (1980).
    [Crossref]
  19. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
    [Crossref] [PubMed]
  20. G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert-Beer law in the transmittance of a light beam through diffusing media: Experimental results,” J. Modern Optics 35, 229–42 (1988).
    [Crossref]
  21. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, John Wiley and Sons, New York (1983).
  22. T. C. Bond and R. W. Bergstrom, “Light Absorption by Carbonaceous Particles: An Investigative Review,” Aerosol Science and Technology 40, 27–67 (2006).
    [Crossref]
  23. H. Senftleben and E. Benedict, “Optical constants and radiation laws of carbon,” Ann. Physik 54, 65–78 (1918).

2009 (1)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

2008 (2)

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[Crossref] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (3)

H. Xu and M. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485–6501 (2006).
[Crossref] [PubMed]

T. C. Bond and R. W. Bergstrom, “Light Absorption by Carbonaceous Particles: An Investigative Review,” Aerosol Science and Technology 40, 27–67 (2006).
[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

2005 (1)

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[Crossref] [PubMed]

2003 (2)

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[Crossref] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

2000 (1)

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

1996 (2)

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[Crossref] [PubMed]

D. Royston, R. Poston, and S. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J.Biomed. Opt. 1, 110–116 (1996).
[Crossref]

1992 (1)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref] [PubMed]

1991 (1)

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

1989 (1)

S. Flock, M. Patterson, and B. Wilson, “Monte Carlo modeling of light propagation in highly scattering tissues–II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

1988 (1)

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert-Beer law in the transmittance of a light beam through diffusing media: Experimental results,” J. Modern Optics 35, 229–42 (1988).
[Crossref]

1980 (1)

T. R. Wagner, W. G. Houf, and F. P. Incropera, “Radiative property measurements for India ink suspensions of varying concentration,” Solar Energy 25, 549–554 (1980).
[Crossref]

1918 (1)

H. Senftleben and E. Benedict, “Optical constants and radiation laws of carbon,” Ann. Physik 54, 65–78 (1918).

Benedict, E.

H. Senftleben and E. Benedict, “Optical constants and radiation laws of carbon,” Ann. Physik 54, 65–78 (1918).

Bergstrom, R. W.

T. C. Bond and R. W. Bergstrom, “Light Absorption by Carbonaceous Particles: An Investigative Review,” Aerosol Science and Technology 40, 27–67 (2006).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, John Wiley and Sons, New York (1983).

Bond, T. C.

T. C. Bond and R. W. Bergstrom, “Light Absorption by Carbonaceous Particles: An Investigative Review,” Aerosol Science and Technology 40, 27–67 (2006).
[Crossref]

Bruscaglioni, P.

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert-Beer law in the transmittance of a light beam through diffusing media: Experimental results,” J. Modern Optics 35, 229–42 (1988).
[Crossref]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Cubeddu, R.

Del Bianco, S.

Di Ninni, P.

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: Towards a Reference Standard for Diffusive Media,” Submitted

Dimofte, A.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[Crossref] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Farina, A.

Finlay, J. C.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[Crossref] [PubMed]

Flock, S.

S. Flock, M. Patterson, and B. Wilson, “Monte Carlo modeling of light propagation in highly scattering tissues–II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

Foschum, F.

Grosenick, D.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[Crossref] [PubMed]

Houf, W. G.

T. R. Wagner, W. G. Houf, and F. P. Incropera, “Radiative property measurements for India ink suspensions of varying concentration,” Solar Energy 25, 549–554 (1980).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, John Wiley and Sons, New York (1983).

Incropera, F. P.

T. R. Wagner, W. G. Houf, and F. P. Incropera, “Radiative property measurements for India ink suspensions of varying concentration,” Solar Energy 25, 549–554 (1980).
[Crossref]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Kienle, A.

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Leonard, M.n H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[Crossref] [PubMed]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref] [PubMed]

Martelli, F.

McBride, T. O.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Michels, R.

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Moes, C. J. M.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[Crossref] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

Osterberg, U. L.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Patterson, M.

H. Xu and M. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485–6501 (2006).
[Crossref] [PubMed]

S. Flock, M. Patterson, and B. Wilson, “Monte Carlo modeling of light propagation in highly scattering tissues–II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref] [PubMed]

Paulsen, K. D.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Pifferi, A.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Poston, R.

D. Royston, R. Poston, and S. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J.Biomed. Opt. 1, 110–116 (1996).
[Crossref]

Prahl, S.

D. Royston, R. Poston, and S. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J.Biomed. Opt. 1, 110–116 (1996).
[Crossref]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[Crossref] [PubMed]

Ramanujam, N.

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[Crossref] [PubMed]

Rinneberg, H.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[Crossref] [PubMed]

Royston, D.

D. Royston, R. Poston, and S. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J.Biomed. Opt. 1, 110–116 (1996).
[Crossref]

Schubert, F.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[Crossref] [PubMed]

Senftleben, H.

H. Senftleben and E. Benedict, “Optical constants and radiation laws of carbon,” Ann. Physik 54, 65–78 (1918).

Spinelli, L.

Sukowski, U.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[Crossref] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

Torricelli, A.

Tunnell, J. W.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[Crossref] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

van Gemert, M. J. C.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

van Marle, J.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

van Staveren, H. J.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

Wagner, T. R.

T. R. Wagner, W. G. Houf, and F. P. Incropera, “Radiative property measurements for India ink suspensions of varying concentration,” Solar Energy 25, 549–554 (1980).
[Crossref]

Willscher, C.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Wilson, B.

S. Flock, M. Patterson, and B. Wilson, “Monte Carlo modeling of light propagation in highly scattering tissues–II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref] [PubMed]

Xu, H.

Zaccanti, G.

Zhu, C.

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[Crossref] [PubMed]

Zhu, T. C.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[Crossref] [PubMed]

Aerosol Science and Technology (1)

T. C. Bond and R. W. Bergstrom, “Light Absorption by Carbonaceous Particles: An Investigative Review,” Aerosol Science and Technology 40, 27–67 (2006).
[Crossref]

Ann. Physik (1)

H. Senftleben and E. Benedict, “Optical constants and radiation laws of carbon,” Ann. Physik 54, 65–78 (1918).

Appl. Opt. (2)

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high density media,” Appl. Opt. 42, 4023–4030 (2003).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Flock, M. Patterson, and B. Wilson, “Monte Carlo modeling of light propagation in highly scattering tissues–II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[Crossref] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M.n H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008).
[Crossref] [PubMed]

J. Modern Optics (1)

G. Zaccanti and P. Bruscaglioni, “Deviation from the Lambert-Beer law in the transmittance of a light beam through diffusing media: Experimental results,” J. Modern Optics 35, 229–42 (1988).
[Crossref]

J.Biomed. Opt. (1)

D. Royston, R. Poston, and S. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J.Biomed. Opt. 1, 110–116 (1996).
[Crossref]

Med. Phys. (1)

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Opt. Express (4)

Phys. Med. Biol. (4)

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[Crossref] [PubMed]

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[Crossref] [PubMed]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref] [PubMed]

Solar Energy (1)

T. R. Wagner, W. G. Houf, and F. P. Incropera, “Radiative property measurements for India ink suspensions of varying concentration,” Solar Energy 25, 549–554 (1980).
[Crossref]

Submitted (1)

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: Towards a Reference Standard for Diffusive Media,” Submitted

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, John Wiley and Sons, New York (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

India ink used for measurements. Samples are from five different brands (Higgins, Rotring, Pelikan, Staedtler, and Koh I Noor) and for some brands also from different batches (three batches of Pelikan, two of Higgins, and two of Rotring).

Fig. 2
Fig. 2

Extinction and absorption coefficient as a function of the India ink concentration. The results pertain to the sample of Higgins A at λ = 632.8 nm.

Fig. 3
Fig. 3

Summary of the results obtained from measurements on nine samples of India ink from different brands and different batches. The results for the specific extinction and absorption coefficients εeink and εaink are reported together with the results for the ratio εaink/εeink.

Fig. 4
Fig. 4

Comparison among the normalized spectra of extinction coefficient for three brands of India ink. The curves for Higgins A, Higgins B, and Pelikan A are almost indistinguishable.

Fig. 5
Fig. 5

Results of measurements of extinction coefficient carried out on the same dilution of ink (Higgins A) over a period of about one year. The horizontal lines represent the average values at the three wavelengths.

Fig. 6
Fig. 6

Comparisons with Mie theory: The normalized spectrum for the extinction coefficient measured for the Higgins A sample and the values for the albedo averaged over the nine samples are compared with Mie theory simulations for spheres of different diameter (0.1, 0.13, and 1 μm) and for the bimodal distribution (mixture) of large (1 μm) and small (0.1 μm) particles reported in [13].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ e ( ρ ink ) = ɛ eink ρ ink
μ a ( ρ ink ) = ɛ aink ρ ink .
μ eff 2 ( ρ ink ) = 3 μ s 0 ( μ a 0 + ɛ aink ρ ink )
ɛ aink = S ink 3 μ s 0

Metrics