Abstract

We report on a numerical analysis of the nonlinear coupling characteristics in triangular triple-core photonic crystal fibers (TTC-PCFs) by using coupled mode theory. The results show that the coupling of the TTC-PCFs exhibit more excellent power selectivity than that of the dual-core PCF and sharper optical switching and coupling-band with lower critical power are implemented in asymmetric TTC-PCF. By adjusting the parameters of the TTC-PCF structure and length, a coupling-band power controlled with better flatness will be obtained, in which more than 90% input power can be transferred. These results maybe offer a new possibility for application fields including optical switching, pulse shaping and pulse compressing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
    [CrossRef]
  2. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, “Femotosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13(10), 904–906 (1988).
    [CrossRef] [PubMed]
  3. C. Schmidt-Hattenberger, U. Trutschel, and F. Lederer, “Nonlinear switching in multiple-core couplers,” Opt. Lett. 16(5), 294–296 (1991).
    [CrossRef] [PubMed]
  4. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  5. A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, J. Fini, R. T. Bise, and D. J. Digiovanni, “All-optical switching and multifrequency generation in a dual-core photonic crystal fiber,” Opt. Lett. 31(10), 1480–1482 (2006).
    [CrossRef] [PubMed]
  6. A. Tonello, M. Szpulak, J. Olszewski, S. Wabnitz, A. B. Aceves, and W. Urbanczyk, “Nonlinear control of soliton pulse delay with asymmetric dual-core photonic crystal fibers,” Opt. Lett. 34(7), 920–922 (2009).
    [CrossRef] [PubMed]
  7. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
    [CrossRef]
  8. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
    [CrossRef] [PubMed]
  9. J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
    [CrossRef] [PubMed]
  10. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003).
    [CrossRef] [PubMed]
  11. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear dual-core photonic crystal fiber couplers,” Opt. Lett. 30(14), 1858–1860 (2005).
    [CrossRef] [PubMed]
  12. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [CrossRef] [PubMed]
  13. X. Sun, “Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism,” Opt. Lett. 32(17), 2484–2486 (2007).
    [CrossRef] [PubMed]
  14. M. Liu and P. Shum, “Generalized coupled nonlinear equations for the analysis of asymmetric two-core fiber coupler,” Opt. Express 11(2), 116–119 (2003).
    [CrossRef] [PubMed]
  15. K. R. Khan, T. X. Wu, D. N. Christodoulides, and G. I. Stegeman, “Soliton switching and multi-frequency generation in a nonlinear photonic crystal fiber coupler,” Opt. Express 16(13), 9417–9428 (2008).
    [CrossRef] [PubMed]
  16. Y. Yan and J. Toulouse, “Nonlinear inter-core coupling in triple-core photonic crystal fibers,” Opt. Express 17(22), 20272–20281 (2009).
    [CrossRef] [PubMed]
  17. W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [CrossRef]
  18. P. Di Bin and N. Mothe, “Numerical analysis of directional coupling in dual-core microstructured optical fibers,” Opt. Express 17(18), 15778–15789 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (1)

2007 (3)

2006 (1)

2005 (1)

2004 (1)

2003 (3)

2000 (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

1994 (1)

1991 (1)

1988 (1)

1987 (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Aceves, A. B.

Andrejco, M. J.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Bang, O.

Betlej, A.

Birks, T. A.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Bise, R. T.

Bjarklev, A.

Christodoulides, D. N.

Di Bin, P.

Digiovanni, D. J.

Du, J.

Fini, J.

Friberg, S. R.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, “Femotosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13(10), 904–906 (1988).
[CrossRef] [PubMed]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Huang, W.

Jankovic, L.

Khan, K. R.

Kivshar, Y. S.

Knight, J. C.

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Koshiba, M.

Laegsgaard, J.

Lederer, F.

Liu, M.

Liu, Y.

Makris, K. G.

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Mothe, N.

Oliver, M. K.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Olszewski, J.

Reichenbach, K. L.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Saifi, M. A.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Saitoh, K.

Salgueiro, J. R.

Sato, Y.

Schmidt-Hattenberger, C.

Sfez, B. G.

Shum, P.

Silberberg, Y.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, “Femotosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13(10), 904–906 (1988).
[CrossRef] [PubMed]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Smith, P. S.

Smith, P. W.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Stegeman, G. I.

Sun, X.

Suntsov, S.

Szpulak, M.

Taru, T.

Tonello, A.

Toulouse, J.

Trutschel, U.

Urbanczyk, W.

Wabnitz, S.

Wang, Z.

Weiner, A. M.

Wu, T. X.

Xu, C.

Yan, Y.

Appl. Phys. Lett. (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51(15), 1135–1137 (1987).
[CrossRef]

Electron. Lett. (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (7)

Opt. Lett. (7)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometries of (a) symmetric and (b) asymmetric TTC-PCF

Fig. 2
Fig. 2

(a) Normalized powers of the three cores in a symmetric TTC-PCF vs. the propagation distance when P 0 = 1W; (b)-(d) normalized mode field distributions at 0m, 0.05m and 0.139m.

Fig. 3
Fig. 3

Transmittances of the three cores vs. the input power P 0 in a symmetric TTC-PCF with length L c.

Fig. 4
Fig. 4

Transmittances of the input cores vs. the input power P 0 in the TTC-PCFs with length L c. Dashed and solid lines correspond to the symmetric and asymmetric TTC-PCFs, respectively.

Fig. 5
Fig. 5

Transmittances of the input cores vs. the input power P 0 in the TTC-PCF with length L b. Dashed and solid lines correspond to symmetric and asymmetric TTC-PCFs, respectively.

Fig. 6
Fig. 6

Transmittances of the input core vs. the input power P 0 in (a) symmetric and (b) asymmetric TTC-PCFs with different lengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z , t ) = m = 1 3 A m ( z , t ) F m ( x , y )     e i   β 0 m z .
A 1 z = i κ 12 A 2 + i κ 13 A 3 + i γ 1 ( | A 1 | 2 + η 12 | A 2 2 | + η 13 | A 3 2 | ) A 1 A 2 z = i κ 21 A 1 + i κ 23 A 3 + i γ 2 ( | A 2 | 2 + η 21 | A 1 2 | + η 23 | A 3 2 | ) A 2 . A 3 z = i κ 31 A 1 + i κ 32 A 2 + i γ 3 ( | A 3 | 2 + η 31 | A 1 2 | + η 32 | A 2 2 | ) A 3
κ l m = k 0 2 β Ω ( n 2 ( x , y ) n l 2 ( x , y ) )     F l ( x , y ) F m ( x , y )   d Ω .

Metrics