Abstract

We present an all-fiber frequency-stabilized ring laser system with an integrated reference gas cell consisting of a hollow core fiber filled with acetylene. Through nonlinear absorption spectroscopy the laser frequency is stabilized to a specific absorption line of acetylene. Three different stabilization schemes are investigated and the minimum Allan deviation obtained after 100 s is 4.4 · 10−11.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Quinn, “Practical realization of the definiton of the metre including recommended ratiations of other optical frequency standards,” Metrologia 40, 103 (2001).
    [CrossRef]
  2. W. D. Philips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
    [CrossRef]
  3. C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
    [CrossRef]
  4. MEP 2005, http://www.bipm.org/utils/common/pdf/mep/M-e-P_C2H2_1.54.pdf
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
    [CrossRef]
  7. F. Benabid, J. C. Knight, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [CrossRef] [PubMed]
  8. . J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).
  9. F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
    [CrossRef]
  10. V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 16, 1211 (2009).
    [CrossRef]
  11. M. Nakazawa, J. Hongo, and K. Kasai, “A C2H2 frequency-stabilized erbium-doped fiber laser and its application to coherent communication,” Conference on Fiber Laser-Technology, Systems and Application (2007).
  12. K. Kasai, M. Yoshida, and M. Nakazawa, “An Acetylene (13C2H2) Stabilized Single-Polarization Fiber Laser,” Electron. Commun. Japan 89, 9–17 (2006).
  13. K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [CrossRef] [PubMed]
  14. P. T. Marty, J. Morel, and T. Feurer, “All-fiber multi-purpose gas cells and their applications in spectroscopy,” J. Lightwave Technol. 28, 1236–1240 (2010).
    [CrossRef]
  15. W. C. Swann, and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [CrossRef]
  16. K. Shimoda, High-Resolution Laser Spectroscopy (Springer, 1976).
  17. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
    [CrossRef] [PubMed]
  18. F. Riehle, Frequency Standards, Basics and Applications (Wiley, 2004).
  19. K. Knabe, R. Thapa, B. R. Washburn, and K. L. Corwin, “Reflected Pump Technique for Saturated Absorption Spectroscopy Inside Photonic Bandgap Fibers,” Conference on Lasers & Electro-Optics Conference, session JThD46, 2508–2509 (2007).
  20. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 28, 79–87 (2001).
    [CrossRef]

2010 (1)

2009 (3)

K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef] [PubMed]

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 16, 1211 (2009).
[CrossRef]

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

2006 (3)

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

K. Kasai, M. Yoshida, and M. Nakazawa, “An Acetylene (13C2H2) Stabilized Single-Polarization Fiber Laser,” Electron. Commun. Japan 89, 9–17 (2006).

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

2002 (1)

F. Benabid, J. C. Knight, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

2001 (2)

T. J. Quinn, “Practical realization of the definiton of the metre including recommended ratiations of other optical frequency standards,” Metrologia 40, 103 (2001).
[CrossRef]

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 28, 79–87 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

1998 (1)

W. D. Philips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

Ahtee, V.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 16, 1211 (2009).
[CrossRef]

Allen, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Amezcua-Correa, R.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Araujo, F. M.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Bartelt, H.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Barwood, G. P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

Benabid, F.

K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef] [PubMed]

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 28, 79–87 (2001).
[CrossRef]

Carvalho, J. P.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Corwin, K. L.

Couny, F.

K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef] [PubMed]

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Edwards, C. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

Faheem, M.

Ferreira, L. A.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Feurer, T.

Gilbert, S. L.

Gill, P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

Kasai, K.

K. Kasai, M. Yoshida, and M. Nakazawa, “An Acetylene (13C2H2) Stabilized Single-Polarization Fiber Laser,” Electron. Commun. Japan 89, 9–17 (2006).

Knabe, K.

Knight, J. C.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Lehmann, H.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Light, P. S.

K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef] [PubMed]

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

Lim, J.

Magalhaes, F.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Margolis, H. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

Marty, P. T.

Merimaa, M.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 16, 1211 (2009).
[CrossRef]

Morel, J.

Nakazawa, M.

K. Kasai, M. Yoshida, and M. Nakazawa, “An Acetylene (13C2H2) Stabilized Single-Polarization Fiber Laser,” Electron. Commun. Japan 89, 9–17 (2006).

Naweed, A.

Nicholson, J. W.

Nyholm, K.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 16, 1211 (2009).
[CrossRef]

Philips, W. D.

W. D. Philips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definiton of the metre including recommended ratiations of other optical frequency standards,” Metrologia 40, 103 (2001).
[CrossRef]

Roberts, P. H.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

Russell, P. St. J.

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Santos, J. L.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Swann, W. C.

Thapa, R.

Tillman, K.

Van Roosbroeck, J.

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Washburn, B. R.

Weaver, O. L.

Yoshida, M.

K. Kasai, M. Yoshida, and M. Nakazawa, “An Acetylene (13C2H2) Stabilized Single-Polarization Fiber Laser,” Electron. Commun. Japan 89, 9–17 (2006).

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 28, 79–87 (2001).
[CrossRef]

Electron. Commun. Japan (1)

K. Kasai, M. Yoshida, and M. Nakazawa, “An Acetylene (13C2H2) Stabilized Single-Polarization Fiber Laser,” Electron. Commun. Japan 89, 9–17 (2006).

IEEE Trans. Instrum. Meas. (1)

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 16, 1211 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Mol. Spectrosc. (1)

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the 1 + 3 combination band of 12C2H2 in the 1.5 m region,” J. Mol. Spectrosc. 234, 43–48 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sensors ID (1)

. J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhaes, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araujo, L. A. Ferreira, and J. C. Knight, “Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy,” J. Sensors ID 398403 (2009).

Metrologia (1)

T. J. Quinn, “Practical realization of the definiton of the metre including recommended ratiations of other optical frequency standards,” Metrologia 40, 103 (2001).
[CrossRef]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488–491 (2005).
[CrossRef]

Opt. Commun. (1)

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Mod. Phys. (1)

W. D. Philips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

Science (2)

F. Benabid, J. C. Knight, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. H. Roberts, and D. C. Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Other (5)

MEP 2005, http://www.bipm.org/utils/common/pdf/mep/M-e-P_C2H2_1.54.pdf

M. Nakazawa, J. Hongo, and K. Kasai, “A C2H2 frequency-stabilized erbium-doped fiber laser and its application to coherent communication,” Conference on Fiber Laser-Technology, Systems and Application (2007).

K. Shimoda, High-Resolution Laser Spectroscopy (Springer, 1976).

F. Riehle, Frequency Standards, Basics and Applications (Wiley, 2004).

K. Knabe, R. Thapa, B. R. Washburn, and K. L. Corwin, “Reflected Pump Technique for Saturated Absorption Spectroscopy Inside Photonic Bandgap Fibers,” Conference on Lasers & Electro-Optics Conference, session JThD46, 2508–2509 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a): Schematic of the ring laser; for details see text. (b): Spectral intensity as a function of wavelength for different settings of the bandpass filters within the cavity.

Fig. 2
Fig. 2

(a) Pump-probe setup. (b) Allan deviation versus time (blue curve) and Eq. 1 with S/N = 90 (black curve). The laser was stabilized for 8400 s.

Fig. 3
Fig. 3

(a) Reflected pump setup. (b) Allan deviation versus of time [lenght of data record]: Without dithering and polarization scrambling (green curve)[1300 s]. With dithering only (red curve)[8000 s]. With dithering and polarization scrambling (blue curve)[1200 s]. Eq. 1 with S/N = 1700 (black curve).

Fig. 4
Fig. 4

The 1f error signal with (red curve) and without interferences (black curve).

Fig. 5
Fig. 5

(a) Pound-Drever-Hall setup. (b) Allan deviation versus time (blue curve) and Eq. 1 with S/N = 180 (black curve). The laser was stabilized for 7200 s

Tables (1)

Tables Icon

Table 1 Comparison

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ( τ ) = Δ ν ν 0 1 S / N 1 τ

Metrics