Abstract

The focal field of high NA lens axicon with a binary-phase optical component is calculated by using vector diffraction theory. Numerical results show that for a radially polarized Bessel Gaussian input field, the proposed system generates a subwavelength (0.395λ) longitudinally polarized beam with large uniform depth of focus (approximately 6 λ).

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask

P. Suresh, C. Mariyal, K. B. Rajesh, T. V. S. Pillai, and Z. Jaroszewicz
Appl. Opt. 52(4) 849-853 (2013)

Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams

Zhongquan Nie, Weiqiang Ding, Dongyu Li, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Opt. Express 23(2) 690-701 (2015)

Generation of sub wavelength super-long dark channel using high NA lens axicon

K. Lalithambigai, P. Suresh, V. Ravi, K. Prabakaran, Z. Jaroszewicz, K. B. Rajesh, P. M. Anbarasan, and T. V. S. Pillai
Opt. Lett. 37(6) 999-1001 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [Crossref]
  2. E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
    [Crossref]
  3. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
    [Crossref]
  4. R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
    [Crossref] [PubMed]
  5. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004).
    [Crossref] [PubMed]
  6. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191(3-6), 161–172 (2001).
    [Crossref]
  7. C. Liu and S.-H. Park, “Numerical analysis of an annular-aperture solid immersion lens,” Opt. Lett. 29(15), 1742–1744 (2004).
    [Crossref] [PubMed]
  8. Y. Xu, J. Singh, C. J. R. Sheppard, and N. Chen, “Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter,” Opt. Express 15(10), 6409–6413 (2007).
    [Crossref] [PubMed]
  9. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991).
    [Crossref] [PubMed]
  10. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staroński, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18(22), 1893–1895 (1993).
    [Crossref] [PubMed]
  11. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
    [Crossref] [PubMed]
  12. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
    [Crossref] [PubMed]
  13. G. Mikula, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
    [Crossref] [PubMed]
  14. D. Mas, J. Espinosa, J. Perez, and C. Illueca, “Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus,” Opt. Express 15(26), 17842–17854 (2007).
    [Crossref] [PubMed]
  15. W. H. Steel, P. Mollet ed. (Pergamon, Oxford, UK), 181 − 192(1960)
  16. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15(9), 2383–2390 (1998).
    [Crossref]
  17. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a converging aberrated lens,” J. Opt. Soc. Am. A 16(1), 191–197 (1999).
    [Crossref]
  18. J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000).
    [Crossref]
  19. A. Burvall, K. Kołacz, Z. Jaroszewicz, and A. T. Friberg, “Simple lens axicon,” Appl. Opt. 43(25), 4838–4844 (2004).
    [Crossref] [PubMed]
  20. K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6(10), 785–787 (2008).
    [Crossref]
  21. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  22. C.-C. Sun and C.-K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28(2), 99–101 (2003).
    [Crossref] [PubMed]
  23. T. G. Jabbour and S. M. Kuebler, “Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates,” Opt. Express 14(3), 1033–1043 (2006).
    [Crossref] [PubMed]
  24. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  25. J. Chen and Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
    [Crossref]
  26. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]

2010 (1)

J. Chen and Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[Crossref]

2008 (2)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6(10), 785–787 (2008).
[Crossref]

2007 (4)

2006 (1)

2004 (4)

2003 (1)

2001 (1)

L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191(3-6), 161–172 (2001).
[Crossref]

2000 (3)

J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

1993 (1)

1992 (2)

1991 (1)

1990 (1)

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Anbarasan, P. M.

Bará, S.

Brown, T. G.

Burvall, A.

Chen, J.

J. Chen and Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[Crossref]

Chen, N.

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Choudhury, A.

Davidson, N.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Espinosa, J.

Friberg, A. T.

Friesem, A. A.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Hasman, E.

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Helseth, L. E.

L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191(3-6), 161–172 (2001).
[Crossref]

Illueca, C.

Jabbour, T. G.

Jaroszewicz, Z.

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Kimura, W. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Kolacz, K.

Kolodziejczyk, A.

Kuebler, S. M.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Liu, C.

Liu, C.-K.

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Mas, D.

Mikula, G.

Morales, J.

Nemoto, S.

J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000).
[Crossref]

Park, S.-H.

Perez, J.

Petelczyc, K.

Pu, J.

J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000).
[Crossref]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Rajesh, K. B.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Romea, R. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

Sheppard, C. J. R.

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Singh, J.

Sochacki, J.

Staronski, L. R.

Sun, C.-C.

Sypek, M.

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Xu, Y.

Yew, E.

E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

Youngworth, K. S.

Yu, Y.

J. Chen and Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[Crossref]

Zhang, H.

J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Opt. Commun. (4)

J. Chen and Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[Crossref]

L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191(3-6), 161–172 (2001).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007).
[Crossref]

Opt. Eng. (1)

J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. D Part. Fields (1)

R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D Part. Fields 42(5), 1807–1818 (1990).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Other (1)

W. H. Steel, P. Mollet ed. (Pergamon, Oxford, UK), 181 − 192(1960)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of Lens Axicon with binary phase element.

Fig. 2
Fig. 2

(a) Intensity profile of the radial component (Er 2), longitudinal component (Ez 2), and the total field (Er 2 + Ez 2) of the focal plane of the high NA lens for radial polarized Bessel-Gaussian beam. (b) Contour plot for the total intensity distribution.

Fig. 3
Fig. 3

Contour plots for the electric field density distributions in the yz-plane for lens after additional phase modulation. (a) Total energy density distribution. (b). Radial component.

Fig. 4
Fig. 4

Intensity profile of the radial component(Er 2), longitudinal component(Ez 2), and the total field (Er 2 + Ez 2) of the focal plane of the high NA lens axicon for radial polarized Bessel-Gaussian beam (b) Contour plot for the total intensity distribution.

Fig. 5
Fig. 5

Intensity profile of the radial component (Er 2), longitudinal component (Ez 2), and the total field (Er 2 + Ez 2) of the focal plane of the high NA lens axicon for radial polarized Bessel-Gaussian beam with additional phase modulation. (b) Contour plot for the total intensity distribution.

Fig. 6
Fig. 6

Contour plots for the electric field density distributions in the yz-plane for lens axicon after additional phase modulation. (a). Radial component. (b). Longitudinal component.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E r ( r , z ) = 0 α cos ( θ ) sin ( 2 θ ) l ( θ ) J 1 ( k r sin ( θ ) ) exp ( i k z cos ( θ ) ) d θ E z ( r , z ) = 0 α cos ( θ ) sin 2 ( θ ) l ( θ ) J 0 ( k r sin ( θ ) ) exp ( i k z cos ( θ ) ) d θ ,
l ( θ ) = [ exp [ ξ 2 ( sin ( θ ) sin ( α ) ) 2 ] J 1 ( 2 ξ ( sin ( θ ) sin ( α ) ) ) ] ,
A ( θ ) = exp ( i k ( β sin ( θ ) sin ( α ) ) 4 + 1 2 f ( sin ( θ ) sin ( α ) ) 2 ) ,
T ( θ ) = { 1 , f o r 0 θ < θ 1 , θ 2 θ < θ 3 , θ 4 θ < α 1 f o r θ 1 θ < θ 2 , θ 3 θ < θ 4 .
( η = j z / ( j z + j r ) ) .   where   ϕ z = 2 π 0 r 0 | E z ( r , 0 ) | 2 r d r   and   ϕ r = 2 π 0 r 0 | E r ( r , 0 ) | 2 r d r .

Metrics