Abstract

Multiple pulse nanosecond laser induced damage in the bulk of LiB3O5 (LBO) crystals was investigated at 1064 nm, 532 nm and 355 nm. Scanning electron microscopy of cleaved damage sites confirmed the presence of different zones that have already been reported in the case of KH2PO4 (KDP). Multi pulse measurements reveal a strong decrease of the damage threshold with increasing pulse number at 1064 nm (fatigue effect). A weaker fatigue effect was observed at 532 nm and no fatigue effect was found at 355 nm. This observation is best explained by an inherently statistical light matter interaction generating laser induced damage. Finally, a polarization dependent damage threshold anisotropy was evidenced at all three wavelengths, being strongest at 1064 nm. The results indicate the importance of Li+ vacancy stabilized color centers for the damage mechanism.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Y. Shang, B. S. Hudson, and C. O. Huang, “Infrared and Raman Spectra of Lithium Triborate - Vibrational Assignments and a Correlation with its Nonlinear Optical Activity,” Spectrochim. Acta [A] 47(2), 291–298 (1991).
    [CrossRef]
  2. S. F. Radaev, N. I. Sorokin, and V. I. Simonov, “Atomic Structure and One Dimensional Ionic Conductivity of LiB3O5,” Fiz. Tverd. Tela 33, 3597–3600 (1991).
  3. D. N. Nikogosyan, “Lithium Triborate (LBO) - A Review of its Properties and Applications,” Appl. Phys., A Mater. Sci. Process. 58(3), 181–190 (1994).
    [CrossRef]
  4. G. Mennerat, J. Rault, O. Bonville, P. Canal, P. Villeval, B. Rainaud, H. Albrecht, D. Lupinski, A. Kokh, N. Kononova, V. Vlezko, K. Kokh, G. Chériaux, M. Pittman, J.-P. Chambaret, and G. Mourou, “115 J, 85% efficiency second harmonic generation in LBO,” in CLEO/QELS, (OSA Technical Digest (CD), 2008), paper CPDA1. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CPDA1
  5. Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
    [CrossRef]
  6. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
    [CrossRef]
  7. F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Nanosecond-laser induced damage at 1064 nm, 532 nm, and 355 nm in LiB3O5,” Proc. SPIE 7504, 75041M (2009).
    [CrossRef]
  8. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
    [CrossRef] [PubMed]
  9. International Organization for Standardization, “Determination of laser-damage threshold of optical surfaces Part 2: S-on-1 test,” (ISO 11254–2, 2001), p. 29.
  10. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [CrossRef]
  11. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
    [CrossRef]
  12. J. Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
    [CrossRef] [PubMed]
  13. C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
    [CrossRef]
  14. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
    [CrossRef]
  15. M. Bass and H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. 8(3), 338–343 (1972).
    [CrossRef]
  16. F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
    [CrossRef]
  17. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [CrossRef] [PubMed]
  18. A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, and M. Commandré, “Nanosecond laser induced damage in RbTiOPO4: the missing influence of crystal quality,” Opt. Express 17(20), 18263–18270 (2009).
    [CrossRef] [PubMed]
  19. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser induced damage threshold of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
    [CrossRef] [PubMed]
  20. W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
    [CrossRef]
  21. X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
    [CrossRef]

2009 (3)

2008 (2)

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[CrossRef]

2007 (1)

2006 (3)

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

2005 (1)

2003 (3)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

1997 (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
[CrossRef]

1994 (2)

D. N. Nikogosyan, “Lithium Triborate (LBO) - A Review of its Properties and Applications,” Appl. Phys., A Mater. Sci. Process. 58(3), 181–190 (1994).
[CrossRef]

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

1991 (2)

Q. Y. Shang, B. S. Hudson, and C. O. Huang, “Infrared and Raman Spectra of Lithium Triborate - Vibrational Assignments and a Correlation with its Nonlinear Optical Activity,” Spectrochim. Acta [A] 47(2), 291–298 (1991).
[CrossRef]

S. F. Radaev, N. I. Sorokin, and V. I. Simonov, “Atomic Structure and One Dimensional Ionic Conductivity of LiB3O5,” Fiz. Tverd. Tela 33, 3597–3600 (1991).

1972 (1)

M. Bass and H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. 8(3), 338–343 (1972).
[CrossRef]

Adams, J. J.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[CrossRef]

Albrecht, H.

Barrett, H. H.

M. Bass and H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. 8(3), 338–343 (1972).
[CrossRef]

Bass, M.

M. Bass and H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. 8(3), 338–343 (1972).
[CrossRef]

Bertussi, B.

Carr, C. W.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Chirila, M. M.

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
[CrossRef]

Commandré, M.

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Nanosecond-laser induced damage at 1064 nm, 532 nm, and 355 nm in LiB3O5,” Proc. SPIE 7504, 75041M (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[CrossRef] [PubMed]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, and M. Commandré, “Nanosecond laser induced damage in RbTiOPO4: the missing influence of crystal quality,” Opt. Express 17(20), 18263–18270 (2009).
[CrossRef] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser induced damage threshold of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[CrossRef] [PubMed]

J. Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
[CrossRef] [PubMed]

Demos, S. G.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Ding, Y. J.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Feit, M. D.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
[CrossRef]

Fujita, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Furukawa, Y.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Gallais, L.

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

Garces, N. Y.

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Halliburton, L. E.

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Hildenbrand, A.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Nanosecond-laser induced damage at 1064 nm, 532 nm, and 355 nm in LiB3O5,” Proc. SPIE 7504, 75041M (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, and M. Commandré, “Nanosecond laser induced damage in RbTiOPO4: the missing influence of crystal quality,” Opt. Express 17(20), 18263–18270 (2009).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser induced damage threshold of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[CrossRef] [PubMed]

Hong, W.

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Hu, X. B.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Huang, C. O.

Q. Y. Shang, B. S. Hudson, and C. O. Huang, “Infrared and Raman Spectra of Lithium Triborate - Vibrational Assignments and a Correlation with its Nonlinear Optical Activity,” Spectrochim. Acta [A] 47(2), 291–298 (1991).
[CrossRef]

Hudson, B. S.

Q. Y. Shang, B. S. Hudson, and C. O. Huang, “Infrared and Raman Spectra of Lithium Triborate - Vibrational Assignments and a Correlation with its Nonlinear Optical Activity,” Spectrochim. Acta [A] 47(2), 291–298 (1991).
[CrossRef]

Jiang, H. D.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Johnson, M. A.

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
[CrossRef]

Kamimura, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Liu, H.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Lupinski, D.

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Markgraf, S. A.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Mu, X. D.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Nakai, S.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Nakatsuka, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Natoli, J. Y.

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Nanosecond-laser induced damage at 1064 nm, 532 nm, and 355 nm in LiB3O5,” Proc. SPIE 7504, 75041M (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

J. Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
[CrossRef] [PubMed]

Natoli, J.-Y.

Nikogosyan, D. N.

D. N. Nikogosyan, “Lithium Triborate (LBO) - A Review of its Properties and Applications,” Appl. Phys., A Mater. Sci. Process. 58(3), 181–190 (1994).
[CrossRef]

Nostrand, M. C.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Radaev, S. F.

S. F. Radaev, N. I. Sorokin, and V. I. Simonov, “Atomic Structure and One Dimensional Ionic Conductivity of LiB3O5,” Fiz. Tverd. Tela 33, 3597–3600 (1991).

Radousky, H. B.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Rubenchik, A. M.

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
[CrossRef]

Sasaki, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Sato, M.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Shang, Q. Y.

Q. Y. Shang, B. S. Hudson, and C. O. Huang, “Infrared and Raman Spectra of Lithium Triborate - Vibrational Assignments and a Correlation with its Nonlinear Optical Activity,” Spectrochim. Acta [A] 47(2), 291–298 (1991).
[CrossRef]

Simonov, V. I.

S. F. Radaev, N. I. Sorokin, and V. I. Simonov, “Atomic Structure and One Dimensional Ionic Conductivity of LiB3O5,” Fiz. Tverd. Tela 33, 3597–3600 (1991).

Sorokin, N. I.

S. F. Radaev, N. I. Sorokin, and V. I. Simonov, “Atomic Structure and One Dimensional Ionic Conductivity of LiB3O5,” Fiz. Tverd. Tela 33, 3597–3600 (1991).

Theodore, F.

Théodore, F.

Villeval, P.

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Wagner, F. R.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4.,” Appl. Opt. 48(21), 4263–4269 (2009).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Nanosecond-laser induced damage at 1064 nm, 532 nm, and 355 nm in LiB3O5,” Proc. SPIE 7504, 75041M (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, and M. Commandré, “Nanosecond laser induced damage in RbTiOPO4: the missing influence of crystal quality,” Opt. Express 17(20), 18263–18270 (2009).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser induced damage threshold of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[CrossRef] [PubMed]

Wang, J. Y.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Yamanaka, T.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Yoshida, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

Yoshida, K.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Yoshimura, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Zhang, H. J.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65(12), 1480–1482 (1994).
[CrossRef]

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. N. Nikogosyan, “Lithium Triborate (LBO) - A Review of its Properties and Applications,” Appl. Phys., A Mater. Sci. Process. 58(3), 181–190 (1994).
[CrossRef]

Fiz. Tverd. Tela (1)

S. F. Radaev, N. I. Sorokin, and V. I. Simonov, “Atomic Structure and One Dimensional Ionic Conductivity of LiB3O5,” Fiz. Tverd. Tela 33, 3597–3600 (1991).

IEEE J. Quantum Electron. (1)

M. Bass and H. H. Barrett, “Avalanche Breakdown and the Probabilistic Nature of Laser-Induced Damage,” IEEE J. Quantum Electron. 8(3), 338–343 (1972).
[CrossRef]

J. Cryst. Growth (1)

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247(1-2), 137–140 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(Part 1), 766–769 (2006).
[CrossRef]

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006).
[CrossRef]

Opt. Eng. (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron nuclear double resonance study of trapped hole centers in LiB3O5 crystals,” Phys. Rev. B 68(9), 094111 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

F. R. Wagner, A. Hildenbrand, L. Gallais, H. Akhouayri, M. Commandré, and J. Y. Natoli, “Statistical interpretation of S-on-1 data and the damage initiation mechanism,” Proc. SPIE 7132, 71320Y (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Nanosecond-laser induced damage at 1064 nm, 532 nm, and 355 nm in LiB3O5,” Proc. SPIE 7504, 75041M (2009).
[CrossRef]

Spectrochim. Acta [A] (1)

Q. Y. Shang, B. S. Hudson, and C. O. Huang, “Infrared and Raman Spectra of Lithium Triborate - Vibrational Assignments and a Correlation with its Nonlinear Optical Activity,” Spectrochim. Acta [A] 47(2), 291–298 (1991).
[CrossRef]

Other (2)

G. Mennerat, J. Rault, O. Bonville, P. Canal, P. Villeval, B. Rainaud, H. Albrecht, D. Lupinski, A. Kokh, N. Kononova, V. Vlezko, K. Kokh, G. Chériaux, M. Pittman, J.-P. Chambaret, and G. Mourou, “115 J, 85% efficiency second harmonic generation in LBO,” in CLEO/QELS, (OSA Technical Digest (CD), 2008), paper CPDA1. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CPDA1

International Organization for Standardization, “Determination of laser-damage threshold of optical surfaces Part 2: S-on-1 test,” (ISO 11254–2, 2001), p. 29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the laser damage setup. One wavelength only is used for a given measurement. The used components are: SHG, KTP type II frequency doubling crystal for 1064 nm; IR BF, infrared blocking filter used together with the SHG crystal if a 532nm measurement is carried out; M, 355 nm mirror on a flip mount; λ/2, half-wave plate for the used wavelength; Pol., Glan-laser polarizer; Detector, pyroelectric energy detector; NG, neutral grey filter; BF, a blocking filter for the used wavelength and f. lamp, fibred halogen lamp. In situ damage detection is performed by imaging scattered light with a zoom lens and a CCD camera.

Fig. 2
Fig. 2

Optical microscope images of laser induced damage sites in x-cut LBO (a) and x-cut KTP (b). The used fluences were 240 J/cm2 and 27 J/cm2 respectively. In both cases the observation direction of the images is oriented along the irradiation direction.

Fig. 3
Fig. 3

Scanning electron micrographs of cleaved bulk damage sites generated at high fluence in x-cut LBO. The plane of the break is perpendicular to the laser propagation direction. Different zones are visible: void, modified shell, and crack zone. The inset shows the size of the crack zone.

Fig. 4
Fig. 4

Single pulse damage probability curve of x-cut LBO measured with y-polarized light at 1064 nm, 532 nm and 355 nm. The beam diameter was approximately 25 µm for all wavelengths. The solid lines are generated using a power law distributed damage precursor ensemble.

Fig. 5
Fig. 5

Evolution of the bulk damage threshold of LBO versus pulse number measured at 1064 nm 532 nm and 355 nm using x-cut crystals and y-polarized light. The dashed lines are guides to the eye.

Fig. 6
Fig. 6

Bulk damage probability curves of LBO for 1064 nm, 532 nm and 355 nm using x-cut crystals (light propagation direction along the x-axis). The solid lines are generated using a power law distributed damage precursor ensemble.

Metrics