Abstract

Laser separation of particles is achieved using forces resulting from the momentum exchange between particles and photons constituting the laser radiation. Particles can experience different optical forces depending on their size and/or optical properties, such as refractive index. Thus, particles can move at different speeds in the presence of an optical force, leading to spatial separations. In this paper, we present a theoretical analysis on laser separation of non-absorbing aerosol particles moving at speeds (1-10 cm/sec) which are several orders of magnitude greater than typical particle speeds used in previous studies in liquid medium. The calculations are presented for particle deflection by a loosely focused Gaussian 1064 nm laser, which simultaneously holds and deflects particles entrained in flow perpendicular to their direction of travel. The gradient force holds the particles against the viscous drag for a short period of time. The scattering force simultaneously pushes the particles, perpendicular to the flow, during this period. Our calculations show particle deflections of over 2500 µm for 15 µm aerosol particles, and a separation of over 1500 µm between 5 µm and 10 µm particles when the laser is operated at 10W. We show that a separation of about 421 µm can be achieved between two particles of the same size (10 µm) but having a refractive index difference of 0.1. Density based separations are also possible. Two 10 µm particles with a density difference of 600 kg/m3 can be separated by 193 µm. Examples are shown for separation distances between polystyrene, poly(methylmethacrylate), silica and water particles. These large laser guided deflections represent a novel achievement for optical separation in the gas phase.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
    [CrossRef] [PubMed]
  3. S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).
  4. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
    [CrossRef]
  5. S. B. Kim, J. H. Kim, and S. S. Kim, “Theoretical development of in situ optical particle separator: cross-type optical chromatography,” Appl. Opt. 45(27), 6919–6924 (2006).
    [CrossRef] [PubMed]
  6. T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
    [CrossRef]
  7. J. D. Taylor, A. Terray, and S. J. Hart, “Analytical measurement using optical chromatography,” Proc. SPIE 7400, 74007 (2009).
  8. A. Terray, J. Arnold, and S. J. Hart, “Enhanced optical chromatography in a PDMS microfluidic system,” Opt. Express 13(25), 10406–10415 (2005).
    [CrossRef] [PubMed]
  9. A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3 (2009).
    [CrossRef] [PubMed]
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  12. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef]
  13. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  14. J. Makihara, T. Kaneta, and T. Imasaka, “Optical chromatography Size determination by eluting particles,” Talanta 48(3), 551–557 (1999).
    [CrossRef]
  15. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283 (1971).
    [CrossRef]
  16. A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
    [CrossRef] [PubMed]
  17. M. D. Summers, J. Reid, and D. McGloin, “Optical guiding of aerosols,” Proc. SPIE 6326, U352–U359 (2006).
  18. M. D. Summers, J. P. Reid, and D. McGloin, “Optical guiding of aerosol droplets,” Opt. Express 14(14), 6373–6380 (2006).
    [CrossRef] [PubMed]
  19. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
    [CrossRef]
  20. L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37(4), 756–769 (2008).
    [CrossRef] [PubMed]
  21. H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
    [CrossRef] [PubMed]
  22. J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
    [CrossRef]
  23. J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
    [CrossRef] [PubMed]
  24. T. Imasaka, “Optical chromatography, optical funnel, and optical channel for evaluation of biological cells,” Abstracts of Papers of the American Chemical Society 229, 001-ANYL (2005).
  25. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  26. S. J. Hart, A. Terray, J. Arnold, and T. A. Leski, “Optical chromatography for concentration of biological samples,” Proc. SPIE 6326, 632612 (2006).
  27. S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
    [CrossRef] [PubMed]
  28. R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
    [CrossRef]
  29. T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol measurement: Principles, techniques and applications, P. A. Baron, and K. Willeke, eds. (John Wiley and Sons, Inc., 2001), pp. 751–778.
  30. S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
    [CrossRef] [PubMed]
  31. S. B. Kim, H. J. Sung, and S. S. Kim, “Nondimensional analysis of particle behavior during cross-type optical particle separation,” Appl. Opt. 48(22), 4291–4296 (2009).
    [CrossRef] [PubMed]
  32. S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett. 95(26), 264101 (2009).
    [CrossRef]
  33. S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Resolution of cross-type optical particle separation,” Anal. Chem. 80(15), 6023–6028 (2008).
    [CrossRef] [PubMed]
  34. A. A. Lall and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis,” J. Aerosol Sci. 37(3), 260–271 (2006).
    [CrossRef]
  35. A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
    [CrossRef]
  36. A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
    [CrossRef]
  37. A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
    [CrossRef]
  38. S. K. Friedlander, Smoke, dust and haze: Fundamentals of aerosol dynamics (Oxford University Press, Inc., New York, 2000).
  39. S. B. Kim and S. S. Kim, “Radiation forces on spheres in loosely focused gaussian beam: Ray-optics regime,” J. Opt. Soc. Am. B 23(5), 897–903 (2006).
    [CrossRef]
  40. A. A. Lall, A. Terray, and S. J. Hart, “On-the-fly cross flow laser guided separation of aerosol particles ” Proc.SPIE 7762, 77620W (2010).

2009 (7)

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

S. B. Kim, H. J. Sung, and S. S. Kim, “Nondimensional analysis of particle behavior during cross-type optical particle separation,” Appl. Opt. 48(22), 4291–4296 (2009).
[CrossRef] [PubMed]

S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett. 95(26), 264101 (2009).
[CrossRef]

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

2008 (3)

A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
[CrossRef]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37(4), 756–769 (2008).
[CrossRef] [PubMed]

S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Resolution of cross-type optical particle separation,” Anal. Chem. 80(15), 6023–6028 (2008).
[CrossRef] [PubMed]

2006 (6)

A. A. Lall and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis,” J. Aerosol Sci. 37(3), 260–271 (2006).
[CrossRef]

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
[CrossRef]

S. B. Kim and S. S. Kim, “Radiation forces on spheres in loosely focused gaussian beam: Ray-optics regime,” J. Opt. Soc. Am. B 23(5), 897–903 (2006).
[CrossRef]

S. B. Kim, J. H. Kim, and S. S. Kim, “Theoretical development of in situ optical particle separator: cross-type optical chromatography,” Appl. Opt. 45(27), 6919–6924 (2006).
[CrossRef] [PubMed]

M. D. Summers, J. P. Reid, and D. McGloin, “Optical guiding of aerosol droplets,” Opt. Express 14(14), 6373–6380 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

1999 (1)

J. Makihara, T. Kaneta, and T. Imasaka, “Optical chromatography Size determination by eluting particles,” Talanta 48(3), 551–557 (1999).
[CrossRef]

1997 (1)

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

1995 (1)

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1986 (1)

1975 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[CrossRef] [PubMed]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283 (1971).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Arnold, J.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

A. Terray, J. Arnold, and S. J. Hart, “Enhanced optical chromatography in a PDMS microfluidic system,” Opt. Express 13(25), 10406–10415 (2005).
[CrossRef] [PubMed]

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Burnham, D. R.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

Butler, J. R.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

Chu, S.

Collett, J. L.

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283 (1971).
[CrossRef]

Fair, R. B.

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

Friedlander, S. K.

A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
[CrossRef]

A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
[CrossRef]

A. A. Lall and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis,” J. Aerosol Sci. 37(3), 260–271 (2006).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guha, S.

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

Hart, S. J.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

A. Terray, J. Arnold, and S. J. Hart, “Enhanced optical chromatography in a PDMS microfluidic system,” Opt. Express 13(25), 10406–10415 (2005).
[CrossRef] [PubMed]

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Henry, C. S.

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

Hering, S. V.

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

Hopkins, R. J.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
[CrossRef]

Imasaka, T.

J. Makihara, T. Kaneta, and T. Imasaka, “Optical chromatography Size determination by eluting particles,” Talanta 48(3), 551–557 (1999).
[CrossRef]

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Ishidzu, Y.

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Kaneta, T.

J. Makihara, T. Kaneta, and T. Imasaka, “Optical chromatography Size determination by eluting particles,” Talanta 48(3), 551–557 (1999).
[CrossRef]

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Kawabata, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

Khlystov, A.

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

Kim, J. H.

Kim, S. B.

Kim, S. S.

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

Kuhn, K. L.

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

Lall, A. A.

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
[CrossRef]

A. A. Lall and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis,” J. Aerosol Sci. 37(3), 260–271 (2006).
[CrossRef]

A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
[CrossRef]

Lee, K. H.

S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett. 95(26), 264101 (2009).
[CrossRef]

Leski, T. A.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

Lewis, G. S.

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

Liu, Y.

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

Ma, X. F.

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

Madler, L.

A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
[CrossRef]

Makihara, J.

J. Makihara, T. Kaneta, and T. Imasaka, “Optical chromatography Size determination by eluting particles,” Talanta 48(3), 551–557 (1999).
[CrossRef]

McGloin, D.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

M. D. Summers, J. P. Reid, and D. McGloin, “Optical guiding of aerosol droplets,” Opt. Express 14(14), 6373–6380 (2006).
[CrossRef] [PubMed]

Meresman, H.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Mishima, N.

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

Mitchem, L.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37(4), 756–769 (2008).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
[CrossRef]

Mulholland, G. W.

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Noblitt, S. D.

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

Pamula, V. K.

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

Reid, J. P.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37(4), 756–769 (2008).
[CrossRef] [PubMed]

M. D. Summers, J. P. Reid, and D. McGloin, “Optical guiding of aerosol droplets,” Opt. Express 14(14), 6373–6380 (2006).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
[CrossRef]

Rong, W.

A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
[CrossRef]

Rong, W. Z.

A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
[CrossRef]

Seipenbusch, M.

A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
[CrossRef]

Srinivasan, V.

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

Stroud, R.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Summers, M.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Summers, M. D.

Sung, H. J.

S. B. Kim, H. J. Sung, and S. S. Kim, “Nondimensional analysis of particle behavior during cross-type optical particle separation,” Appl. Opt. 48(22), 4291–4296 (2009).
[CrossRef] [PubMed]

S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett. 95(26), 264101 (2009).
[CrossRef]

S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Resolution of cross-type optical particle separation,” Anal. Chem. 80(15), 6023–6028 (2008).
[CrossRef] [PubMed]

Terray, A.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

A. Terray, J. Arnold, and S. J. Hart, “Enhanced optical chromatography in a PDMS microfluidic system,” Opt. Express 13(25), 10406–10415 (2005).
[CrossRef] [PubMed]

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

Terray, A. V.

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Ward, A. D.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
[CrossRef]

Weaver, K. N.

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

Yoon, S. Y.

S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Resolution of cross-type optical particle separation,” Anal. Chem. 80(15), 6023–6028 (2008).
[CrossRef] [PubMed]

Zachariah, M. R.

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

Aerosol Sci. Technol. (1)

A. A. Lall, X. F. Ma, S. Guha, G. W. Mulholland, and M. R. Zachariah, “Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements,” Aerosol Sci. Technol. 43(11), 1075–1083 (2009).
[CrossRef]

Am. Lab. (1)

S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, “Optical chromatography of biological particles,” Am. Lab. 36, 13 (2004).

Anal. Chem. (5)

T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[CrossRef]

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

S. D. Noblitt, G. S. Lewis, Y. Liu, S. V. Hering, J. L. Collett, and C. S. Henry, “Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition,” Anal. Chem. 81(24), 10029–10037 (2009).
[CrossRef] [PubMed]

S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Resolution of cross-type optical particle separation,” Anal. Chem. 80(15), 6023–6028 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283 (1971).
[CrossRef]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett. 95(26), 264101 (2009).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterisation of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37(4), 756–769 (2008).
[CrossRef] [PubMed]

J. Aerosol Sci. (3)

A. A. Lall, W. Rong, L. Madler, and S. K. Friedlander, “Nanoparticle aggregate volume determination byelectrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements,” J. Aerosol Sci. 39(5), 403–417 (2008).
[CrossRef]

A. A. Lall, M. Seipenbusch, W. Z. Rong, and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: Ii. Comparison of measurements and theory,” J. Aerosol Sci. 37(3), 272–282 (2006).
[CrossRef]

A. A. Lall and S. K. Friedlander, “On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis,” J. Aerosol Sci. 37(3), 260–271 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip 9(4), 521–528 (2009).
[CrossRef] [PubMed]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6(21), 4924–4927 (2004).
[CrossRef]

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Proc. SPIE (1)

R. B. Fair, A. Khlystov, V. Srinivasan, V. K. Pamula, and K. N. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform,” Proc. SPIE 5591, 113–124 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187(4181), 1073–1075 (1975).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Talanta (1)

J. Makihara, T. Kaneta, and T. Imasaka, “Optical chromatography Size determination by eluting particles,” Talanta 48(3), 551–557 (1999).
[CrossRef]

Other (8)

M. D. Summers, J. Reid, and D. McGloin, “Optical guiding of aerosols,” Proc. SPIE 6326, U352–U359 (2006).

A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3 (2009).
[CrossRef] [PubMed]

J. D. Taylor, A. Terray, and S. J. Hart, “Analytical measurement using optical chromatography,” Proc. SPIE 7400, 74007 (2009).

S. J. Hart, A. Terray, J. Arnold, and T. A. Leski, “Optical chromatography for concentration of biological samples,” Proc. SPIE 6326, 632612 (2006).

T. Imasaka, “Optical chromatography, optical funnel, and optical channel for evaluation of biological cells,” Abstracts of Papers of the American Chemical Society 229, 001-ANYL (2005).

T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol measurement: Principles, techniques and applications, P. A. Baron, and K. Willeke, eds. (John Wiley and Sons, Inc., 2001), pp. 751–778.

S. K. Friedlander, Smoke, dust and haze: Fundamentals of aerosol dynamics (Oxford University Press, Inc., New York, 2000).

A. A. Lall, A. Terray, and S. J. Hart, “On-the-fly cross flow laser guided separation of aerosol particles ” Proc.SPIE 7762, 77620W (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Biological particle size chart. Particles of the same size can differ in density and / or refractive index.

Fig. 2
Fig. 2

Force balance in vertical and horizontal direction, and the resulting particle trajectory. The entry and exit points are determined by the balance between the viscous and gradient force.

Fig. 3
Fig. 3

Particle trajectories at different vertical gas speeds. Notice x- and y- axes are scaled differently for clarity. Particle diameter = 10 µm. Laser power = 10W. Minimum waist diameter = 20 µm (ω0 = 10 µm). The center focal point and middle of the beam are located at (0, 0).

Fig. 4
Fig. 4

Particle trajectories for 2, 5 and 10 µm PS particles. Notice x- and y- axes are scaled differently for clarity. Laser power = 10W. Minimum beam waist diameter = 20 µm (ω0 = 10 µm). The center focal point and middle of the beam are located at (0, 0). Gas velocity = 3 cm/sec.

Fig. 5
Fig. 5

Net deflection (δ) for 2, 5, 10 and 15 µm PS particles as a function of laser power. Minimum beam waist diameter = 20 µm (ω0 = 10 µm). Gas velocity = 3 cm/sec.

Fig. 6
Fig. 6

(a) Net deflection for 5, 10 and 15 µm PS particles as a function of minimum beam width radius. (b) Separation (S) as a function of minimum beam width radius. Laser power = 10 W. Gas velocity = 3 cm/sec.

Fig. 7
Fig. 7

Particle deflection for 2, 5 and 10 µm particles as a function of refractive index. Laser power = 40W. Minimum beam waist radius (ω0 ) = 4 µm. Gas velocity = 3 cm/sec. Particle density = 1000 kg/m3. Example separations are 421 and 198 µm for 10 and 5 µm particles respectively, when the refractive index difference was 0.1.

Fig. 8
Fig. 8

Particle deflection for 2, 5 and 10 µm particles as a function of particle density. Laser power = 10W. Minimum beam waist radius (ω0 ) = 4 µm. Gas velocity = 3 cm/sec. Particle refractive index = 1.59. Example separations: For 10 µm particle, the separation is 193 µm for a density difference of 600 kg/m3. For 5 µm particle, the separation is 143 µm for a density difference of 1000 kg/m3.

Fig. 9
Fig. 9

Deflection for realistic particles having density and refractive index of silica, PS, PMMA and water particles. Both density and refractive index contribute to the deflection and resulting separation between the particles. Particle diameter = 5 µm. Minimum beam waist radius, ω0 = 4 µm. Vertical gas velocity = 3 cm/sec.

Fig. 10
Fig. 10

Separation between PS and PMMA particles at a condition when the PS particle is retained in the beam (higher refractive index leading to higher gradient force) whereas the PMMA particle was not retained due to lower gradient force. Particle diameter = 5 µm. Laser power = 5 W. Minimum beam waist radius, ω0 = 4 µm. Vertical gas velocity = 4 cm/sec.

Tables (1)

Tables Icon

Table 1 Separation distances for realistic 5 µm particles having properties close to silica, PS, PMMA and water particles. Laser Power = 40W, ω0 = 4 µm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

F d r a g = 3 π μ D p V / C c u n n i n g h a m ,
F s c a t t e r = n 0 2 c 0 2 π 0 π / 2 I ( r , z ) [ 1 + R cos 2 θ 1 T 2 cos 2 ( θ 1   θ 2 ) + R cos 2 θ 1 1 + R 2 + 2 R cos 2 θ 2 ] ( D p 2 ) 2 sin 2 θ 1 d θ 1 d ,
F g r a d i e n t = n 0 2 c 0 2 π 0 π / 2 I ( r , z ) [ 1 + R sin 2 θ 1 T 2 sin 2 ( θ 1   θ 2 ) + R sin 2 θ 1 1 + R 2 + 2 R cos 2 θ 2 ] ( D p 2 ) 2 sin 2 θ 1 cos d θ 1 d ,
I ( ρ ,   z ) = 2 P ω ( z ) 2 exp [ 2 r 2 ω ( z ) 2 ] ,
ω ( z ) = ω o [ 1 + ( λ z π ω 0 2 ) 2 ] 1 / 2 ,
ω o = 2 λ π F D p .
R = 1 2 [ sin 2 ( θ 1 θ 2 ) sin 2 ( θ 1 + θ 2 ) + tan 2 ( θ 1 θ 2 ) tan 2 ( θ 1 + θ 2 ) ] ,
T = 1 R = 1 2 [ sin 2 θ 2 sin 2 θ 1 sin 2 ( θ 1 + θ 2 ) + sin 2 θ 2 sin 2 θ 1 sin 2 ( θ 1 + θ 2 ) cos 2 ( θ 1 θ 2 ) ] .
m a = Net force on the particle = Δ F .
m a =   m d v d t = F l a s e r + F v i s c o u s + F g r a v i t a t i o n a l .
ρ π D p 3 6 d v x d t = F s c a t t e r ( x , y ) 3 π μ D p v x .
ρ π D p 3 6 d 2 y d t 2 = F g r a d i e n t ( x , y ) 3 π μ D p ( d y d t v g ) ρ π D p 3 6 g .
ρ π D p 3 6 d v y d t = F g r a d i e n t ( x , y ) 3 π μ D p ( v y v g ) ρ π D p 3 6 g ,
ρ π D p 3 6 d 2 y d t 2 = F g r a d i e n t ( x , y ) 3 π μ D p ( d y d t v g ) ρ π D p 3 6 g ,
S 1 , 2 = δ ( D p , 1 , n 1 , 1 , ρ 1 ) δ ( D p , 2 , n 1 , 2 , ρ 2 ) .

Metrics