Abstract

Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or paired metallic cut-wire arrays at a close distance from the screen. In this paper, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  4. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
    [CrossRef]
  5. M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
    [CrossRef]
  6. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  7. C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).
  8. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  9. F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 82, 1267–1290 (2007).
    [CrossRef]
  10. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
    [CrossRef]
  11. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  12. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
    [CrossRef]
  13. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15, 1415–1427 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1415 .
    [CrossRef] [PubMed]
  14. Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
    [CrossRef]
  15. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11, 125702 (2009).
    [CrossRef]
  16. M. Guillaumée, A. Yu. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwave-length slit,” Opt. Express18, 9722–9727 (2010) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9722 .
    [CrossRef] [PubMed]
  17. I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
    [CrossRef]
  18. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
    [CrossRef] [PubMed]
  19. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
    [CrossRef]
  20. D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Cut-wire-pair structures as two-dimensional magnetic metamaterials,” Opt. Express16, 15185–15190 (2008) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15185 .
    [CrossRef] [PubMed]
  21. G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
    [CrossRef]
  22. V. D. Lam, J. B. Kim, N. T. Tung, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the distance between cut-wire-pair layers on resonance frequencies,” Opt. Express16, 5934–5941 (2008) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5934 .
    [CrossRef] [PubMed]
  23. V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
    [CrossRef]
  24. V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
    [CrossRef]
  25. S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).
  26. CST Microwave Studio, User Manual (CST GmbH, Darmstadt, Germany, 2008).
  27. http://www.rogerscorp.com/documents/725/acm/RO3200-Laminate-Data-Sheet-RO3203-RO3206-RO3210.aspx

2011 (1)

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).

2010 (2)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

2009 (6)

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

2007 (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 82, 1267–1290 (2007).
[CrossRef]

2006 (2)

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

2005 (1)

1999 (2)

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (3)

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1950 (1)

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Andreone, A.

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).

Burokur, S. N.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).

Capolino, F.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
[CrossRef]

Castaldi, G.

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

Cho, M. H.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

de Lustrac, A.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).

Di Gennaro, E.

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

Dolling, G.

Donzelli, G.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Enkrich, C.

Galdi, V.

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

Gallina, I.

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

García-de-Abajo, F. J.

F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 82, 1267–1290 (2007).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Jang, W. H.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

Jin, Y.

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

Kanté, B.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).

Koschny, T.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Lam, V. D.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

Lee, Y. P.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Linden, S.

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

Moreno, E.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

Nikitin, A. Y.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

Park, J. W.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rhee, J. Y.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Schuchinsky, A.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
[CrossRef]

Sellier, A.

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).

Soukoulis, C. M.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
[CrossRef] [PubMed]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
[CrossRef]

Tung, N. T.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Vallecchi, A.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
[CrossRef]

Wegener, M.

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ye, Y. Q.

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

Zhang, L.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Zhou, J.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Zhou, J. F.

Appl. Phys. Lett. (2)

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75, 606–608 (1999).
[CrossRef]

S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009).

IEEE Antennas Wirel. Propag. Lett. (1)

I. Gallina, G. Castaldi, V. Galdi, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic screen,” IEEE Antennas Wirel. Propag. Lett. 9, 641–644 (2010).
[CrossRef]

J. Appl. Phys. (1)

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, J. Y. Rhee, and Y. P. Lee, “Influence of lattice parameters on the resonance frequencies of a cut-wire-pair medium,” J. Appl. Phys. 105, 113102 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11, 125702 (2009).
[CrossRef]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
[CrossRef]

J. Phys. D Appl. Phys. (1)

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, “Effect of the dielectric layer thickness on the electromagnetic response of cut-wire-pair and combined structures,” J. Phys. D Appl. Phys. 42, 115404 (2009).
[CrossRef]

Metamaterials (1)

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Philips Res. Rep. (1)

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (3)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006).
[CrossRef]

Phys. Rev. E (1)

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 82, 1267–1290 (2007).
[CrossRef]

Other (6)

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15, 1415–1427 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1415 .
[CrossRef] [PubMed]

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Cut-wire-pair structures as two-dimensional magnetic metamaterials,” Opt. Express16, 15185–15190 (2008) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15185 .
[CrossRef] [PubMed]

M. Guillaumée, A. Yu. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwave-length slit,” Opt. Express18, 9722–9727 (2010) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9722 .
[CrossRef] [PubMed]

V. D. Lam, J. B. Kim, N. T. Tung, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the distance between cut-wire-pair layers on resonance frequencies,” Opt. Express16, 5934–5941 (2008) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5934 .
[CrossRef] [PubMed]

CST Microwave Studio, User Manual (CST GmbH, Darmstadt, Germany, 2008).

http://www.rogerscorp.com/documents/725/acm/RO3200-Laminate-Data-Sheet-RO3203-RO3206-RO3210.aspx

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)–(c) Top and side views of the unit cell (details in the text), with dark and bright regions representing metallic and dielectric materials, respectively (thicknesses are exaggerated for visualization purposes). (d) Side view of the two laminates utilized for fabrication purposes. (e) Detail of the cut-wire array in the fabricated prototypes.

Fig. 2
Fig. 2

Measured (black solid curve) and simulated (red dashed curve) transmittance spectrum for the single-array case [A-type laminate in Fig. 1(d)]. Also shown (blue dotted curve, magnified by a factor 50 for visualization purposes), as a reference, is the response in the absence of the cut-wire array. The left and right insets illustrate, at the resonance frequency of 14.78 GHz, the simulated electric field magnitude map (in the yz plane at the center of the wire gap, with the metallic-screen and dielectric slab regions overlaid as thick-solid and dashed lines, respectively), and the corresponding surface current (real part) distribution on the wires, respectively.

Fig. 3
Fig. 3

As in Fig. 2, but for the paired-array prototype [cf. Fig. 1(c)]. The insets pertain to a (simulated) resonance frequency of 14.22 GHz.

Fig. 4
Fig. 4

(a), (b), (c) As in Fig. 3, but for nonzero wire longitudinal displacement, Δx = 1, 2, 3 mm, respectively. (d), (e) Representative (simulated) surface current distributions on the wires for Δx = 2 mm, at the resonance frequencies of 13.82 GHz and 14.89 GHz, respectively.

Metrics