Abstract

We demonstrate microstructuring of chalcogenide fiber end faces in order to obtain enhanced transmission due to the antireflective properties of the microstructured surfaces. A variety of molding approaches have been investigated for As2S3 and As2Se3 fibers. Transmission as high as 97% per facet was obtained in the case of As2S3 fiber, compared to the native, Fresnel-loss limited, transmission of 83%. The potential for hydrophobic character was also demonstrated by increasing the contact angle of water droplets to greater than 120°.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999) Chapt. 1, pp. 54–74.
  2. P. van der Werf and J. Haisma, “Broadband antireflective coatings for fiber-communication optics,” Appl. Opt. 23(3), 499–503 (1984).
    [CrossRef] [PubMed]
  3. L. Rayleigh, “On the reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11(1), 51–56 (1879).
    [CrossRef]
  4. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8(3), 549–553 (1991).
    [CrossRef]
  5. A. B. Harker and J. F. DeNatale, ““Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
    [CrossRef]
  6. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31(22), 4371–4376 (1992).
    [CrossRef] [PubMed]
  7. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
    [CrossRef] [PubMed]
  8. D. Hobbs and B. D. MacLeod, “Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349–364 (2005).
    [CrossRef]
  9. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
    [CrossRef]
  10. M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 5965021–5965027 (2005).
  11. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34(11), 1702–1704 (2009).
    [CrossRef] [PubMed]
  12. Damage threshold at 10.6 microns in AMTIR2 glass for example was almost two times larger when patterned with motheye structure compared to when the substrate is left bare. [TelAztec, personal communication (2010)].
  13. C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B Chem. 51(1-3), 92–99 (1998).
    [CrossRef]
  14. G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on Optical Fiber End Faces for Chemical Sensing”, Proc. SPIE 7004, 70042H1–70042H4 (2008).
  15. J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
    [CrossRef]
  16. W. Barthlott, “Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects,” Nord. J. Bot. 1(3), 345–355 (1981).
    [CrossRef]
  17. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33(13), 2695–2706 (1994).
    [CrossRef] [PubMed]
  18. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

2005 (2)

D. Hobbs and B. D. MacLeod, “Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 5965021–5965027 (2005).

1998 (1)

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B Chem. 51(1-3), 92–99 (1998).
[CrossRef]

1997 (1)

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

1994 (1)

1993 (1)

1992 (2)

A. B. Harker and J. F. DeNatale, ““Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31(22), 4371–4376 (1992).
[CrossRef] [PubMed]

1991 (1)

1984 (1)

1981 (1)

W. Barthlott, “Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects,” Nord. J. Bot. 1(3), 345–355 (1981).
[CrossRef]

1962 (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

1879 (1)

L. Rayleigh, “On the reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11(1), 51–56 (1879).
[CrossRef]

Bae, S. Y.

Barthlott, W.

W. Barthlott, “Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects,” Nord. J. Bot. 1(3), 345–355 (1981).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Bitzer, M.

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 5965021–5965027 (2005).

Brundrett, D. L.

DeNatale, J. F.

A. B. Harker and J. F. DeNatale, ““Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

Gaylord, T. K.

Gebhardt, M.

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 5965021–5965027 (2005).

Glytsis, E. N.

Gunning, W. J.

Haisma, J.

Harker, A. B.

A. B. Harker and J. F. DeNatale, ““Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

Hill, W.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B Chem. 51(1-3), 92–99 (1998).
[CrossRef]

Hobbs, D.

D. Hobbs and B. D. MacLeod, “Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

Kontio, J.

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Lee, Y. T.

MacLeod, B. D.

D. Hobbs and B. D. MacLeod, “Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

Miller, W. H.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
[CrossRef] [PubMed]

Motamedi, M. E.

Niemi, T.

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

Pessa, M.

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

Raguin, D. H.

Rayleigh, L.

L. Rayleigh, “On the reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11(1), 51–56 (1879).
[CrossRef]

Rytkonen, T.

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

Song, Y. M.

Southwell, W. H.

van der Werf, P.

Viets, C.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B Chem. 51(1-3), 92–99 (1998).
[CrossRef]

Viheriälä, J.

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

Yu, J. S.

Zosel, J.

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 5965021–5965027 (2005).

Acta Physiol. Scand. (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56(3-4), 385–386 (1962).
[CrossRef] [PubMed]

Appl. Opt. (4)

Electron. Lett. (1)

J. Viheriälä, T. Niemi, J. Kontio, T. Rytkonen, and M. Pessa, “Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography,” Electron. Lett. 43(3), 150–151 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Nord. J. Bot. (1)

W. Barthlott, “Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects,” Nord. J. Bot. 1(3), 345–355 (1981).
[CrossRef]

Opt. Lett. (1)

Proc. Lond. Math. Soc. (1)

L. Rayleigh, “On the reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11(1), 51–56 (1879).
[CrossRef]

Proc. SPIE (3)

A. B. Harker and J. F. DeNatale, ““Diamond gradient index “moth-eye” antireflection surfaces for LWIR windows,” Proc. SPIE 1760, 261–267 (1992).
[CrossRef]

D. Hobbs and B. D. MacLeod, “Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

M. Bitzer, J. Zosel, and M. Gebhardt, “Replication and surface enhancement of microstructured optical components,” Proc. SPIE 5965, 5965021–5965027 (2005).

Sens. Actuators B Chem. (1)

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensors with differently prepared tips,” Sens. Actuators B Chem. 51(1-3), 92–99 (1998).
[CrossRef]

Other (3)

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinting on Optical Fiber End Faces for Chemical Sensing”, Proc. SPIE 7004, 70042H1–70042H4 (2008).

Damage threshold at 10.6 microns in AMTIR2 glass for example was almost two times larger when patterned with motheye structure compared to when the substrate is left bare. [TelAztec, personal communication (2010)].

M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999) Chapt. 1, pp. 54–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup used for direct stamping: (a) side view, (b) top view (attached fiber not shown in this view).

Fig. 2
Fig. 2

SEM images of (a) stamped As2S3 fiber end, and (b) details of transferred structure on fiber end face. (30-µm and 1-µm markers, respectively).

Fig. 3
Fig. 3

SEM images of a stamped As2S3 fiber end - overview and detail. (30-µm and 10-µm markers, respectively).

Fig. 4
Fig. 4

As2S3 fiber end stamped using a positive nickel shim (28A): (a) profile of nickel shim, (b) overview of stamped fiber end, and (c) FIB image of the core area (3-µm marker); platinum was used as a milling protective layer.

Fig. 5
Fig. 5

As2S3 fiber end stamped using a negative nickel shim (28B): (a) profile of nickel shim, (b) FIB detail of the shim features (2-µm marker), (c) SEM image of the stamped fiber core area (1-µm marker).

Fig. 6
Fig. 6

As2S3 fiber end stamped using a positive silicon shim (81104): (a) profile of silicon pattern, (b) overview of stamped fiber end, (c) detail of pattern in the core area, (d) FIB image of the core area (platinum was used as a milling protective layer).

Fig. 7
Fig. 7

Surface of a As2S3 glass fiber stamped with a positive nickel shim (SEM image at 52 degrees).

Fig. 8
Fig. 8

Water droplet on surface of As2S3 glass fibers (a) cleaved surface (b) motheye-stamped surface.

Fig. 9
Fig. 9

Performance of stamped As2S3 fiber using shim 28B (feature height estimated at 849 nm). Inset shows patterned fiber end.

Tables (1)

Tables Icon

Table 1 Transmission values for fiber ends stamped with various shims (Transmission of unstamped fiber is approximately 83%).

Metrics