Abstract

Chalcogenide glass materials exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these photorefractive materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of two complementary soft lithography methods for patterning and integrating chalcogenide glass waveguides from solution. One method, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (µTM), to produce arrays of single mode rib waveguides (2.5µm wide and 4.5µm high) over areas larger than 6 cm2 while maintaining edge roughness below 5.1 nm. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR optical and photonic structures ranging from <5 to 10’s of µm in dimension.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer Verlag, 2003).
  2. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Science 1(1), 74–86 (2010).
    [CrossRef]
  3. C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
    [CrossRef]
  4. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [CrossRef]
  5. S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008).
    [CrossRef]
  6. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17(7), 1184–1191 (1999).
    [CrossRef]
  7. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, “Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films,” J. Opt. Soc. Am. B 20(9), 1844–1852 (2003).
    [CrossRef]
  8. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
    [CrossRef]
  9. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [CrossRef] [PubMed]
  10. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
    [CrossRef] [PubMed]
  11. A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
    [CrossRef]
  12. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
    [CrossRef]
  13. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [CrossRef] [PubMed]
  14. X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett. 35(19), 3228–3230 (2010).
    [CrossRef] [PubMed]
  15. Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [CrossRef]
  16. E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995).
    [CrossRef]
  17. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
    [CrossRef] [PubMed]
  18. C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
    [CrossRef]
  19. G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
    [CrossRef]
  20. S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
    [CrossRef]
  21. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
    [CrossRef]
  22. K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984).
    [CrossRef]
  23. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
    [CrossRef] [PubMed]
  24. E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996).
    [CrossRef]
  25. X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996).
    [CrossRef]
  26. X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
    [CrossRef]
  27. J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998).
    [CrossRef]
  28. Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
    [CrossRef]
  29. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35(20), 3324–3326 (2010).
    [CrossRef] [PubMed]
  30. A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
    [CrossRef] [PubMed]
  31. N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999).
    [CrossRef]
  32. P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelec. Adv. Mater. 7, 1759–1764 (2005).
  33. Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 composite particles via emulsion polymerization,” Colloid Polym. Sci. 281(8), 794–799 (2003).
    [CrossRef]
  34. G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
    [CrossRef]
  35. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
    [CrossRef] [PubMed]
  36. T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
    [CrossRef]
  37. B. B. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
    [CrossRef] [PubMed]
  38. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
    [CrossRef] [PubMed]
  39. C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
    [CrossRef] [PubMed]

2010

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Science 1(1), 74–86 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

B. B. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
[CrossRef] [PubMed]

J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett. 35(19), 3228–3230 (2010).
[CrossRef] [PubMed]

C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35(20), 3324–3326 (2010).
[CrossRef] [PubMed]

2009

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[CrossRef]

2008

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008).
[CrossRef]

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

2007

2006

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

2005

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelec. Adv. Mater. 7, 1759–1764 (2005).

2004

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
[CrossRef]

2003

Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 composite particles via emulsion polymerization,” Colloid Polym. Sci. 281(8), 794–799 (2003).
[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[CrossRef]

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, “Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films,” J. Opt. Soc. Am. B 20(9), 1844–1852 (2003).
[CrossRef]

2001

C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[CrossRef]

1999

1998

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998).
[CrossRef]

1997

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

1996

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996).
[CrossRef]

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996).
[CrossRef]

1995

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995).
[CrossRef]

1984

K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984).
[CrossRef]

1982

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[CrossRef]

Agarwal, A.

Allen, P. J.

Anheier, N. C.

Arnold, C. B.

Barwicz, T.

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[CrossRef]

Benson, T. M.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Bonhomme, E.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Boudies, J.

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[CrossRef]

Brearty, E. M.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Broquin, J.-E.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Bulla, D. A.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[CrossRef]

Cardinal, T.

Carlie, N.

Chen, L.

Chen, Q.

Cheng, X.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Chern, G. C.

K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984).
[CrossRef]

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[CrossRef]

Cho, Q. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[CrossRef]

Choi, D.-Y.

Choi, I. S.

N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999).
[CrossRef]

Clement, T. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Constantoudis, V.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Dan, Y.

Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 composite particles via emulsion polymerization,” Colloid Polym. Sci. 281(8), 794–799 (2003).
[CrossRef]

DeCorby, R. G.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Dirisu, A. O.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Dodabalapur, A.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998).
[CrossRef]

Dua, J.

Duguay, M. A.

Dwivedi, P. K.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Eggleton, B. J.

Feng, N.-N.

Franz, K. J.

Furniss, D.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Galstian, T. V.

Ganjoo, A.

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[CrossRef]

Gmachl, C. F.

Gogolides, E.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

Grozev, G.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

Haugen, C. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Science 1(1), 74–86 (2010).
[CrossRef]

Hô, N.

Hoffman, A. J.

Howard, S. S.

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Hu, J.

Huang, Y.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
[CrossRef]

Irudayaraj, J.

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

Jain, H.

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

Jeon, N. L.

N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999).
[CrossRef]

Johnson, B. R.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelec. Adv. Mater. 7, 1759–1764 (2005).

Kasap, S. O.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Kern, P.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Kim, E.

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995).
[CrossRef]

Kim, S.-S.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008).
[CrossRef]

Kimerling, L.

Knystautas, É. J.

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Krishnaswami, K.

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Science 1(1), 74–86 (2010).
[CrossRef]

Kyotoku, B. B.

Labadie, L.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Lauks, I.

K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984).
[CrossRef]

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Lipson, M.

Liu, Z.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Loni, A.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Luther-Davies, B.

Madden, S. J.

Madsen, C. K.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

McMullin, J. N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Meier, M.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998).
[CrossRef]

Meneghini, C.

Miller, C. A.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Mizaikoff, B.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008).
[CrossRef]

Mujagic, E.

Myers, T. L.

Nguyen, H. T.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Norian, K. H.

K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984).
[CrossRef]

Pai, M. M.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Paloczi, G. T.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
[CrossRef]

Pan, W. J.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Pantano, C. G.

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

Park, H.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Patsis, G. P.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

Pelusi, M. D.

Petit, L.

Phillips, M. C.

Ponnampalam, N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Poon, J. K. S.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
[CrossRef]

Pradel, A.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Prentiss, M.

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Qiao, H.

Richardson, K.

Richardson, K. A.

Riley, B. J.

Rode, A. V.

Rogers, J. A.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998).
[CrossRef]

Rowe, H.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Ruan, Y.

Samoc, M.

Schartner, S.

Seddon, A. B.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Sewell, P.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[CrossRef]

Smith, H.

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[CrossRef]

Smith, S. P.

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

Solmaz, M.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Song, S.

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[CrossRef]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Ta’eed, V. G.

Tarasov, V.

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Toor, F.

Towner, F.

Tsay, C.

Tserepi, A.

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

Viens, J.-F.

Vigreux-Bercovici, C.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

Villeneuve, A.

Waldman, S. J.

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

Whitesides, G. M.

N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999).
[CrossRef]

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996).
[CrossRef]

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Xia, X.

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996).
[CrossRef]

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996).
[CrossRef]

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995).
[CrossRef]

Xu, B.

N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999).
[CrossRef]

Yang, Y.

Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 composite particles via emulsion polymerization,” Colloid Polym. Sci. 281(8), 794–799 (2003).
[CrossRef]

Yariv, A.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
[CrossRef]

Young, C.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008).
[CrossRef]

Yu, C.

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

Zakery, A.

Zhang, D.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Zhang, Y.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

Zhao, X.-M.

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996).
[CrossRef]

Adv. Mater.

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996).
[CrossRef]

N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999).
[CrossRef]

Anal. Bioanal. Chem.

S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008).
[CrossRef]

Anal. Chem.

C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Appl. Phys. Lett.

X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998).
[CrossRef]

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004).
[CrossRef]

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007).
[CrossRef]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Colloid Polym. Sci.

Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 composite particles via emulsion polymerization,” Colloid Polym. Sci. 281(8), 794–799 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Int. J. Appl. Glass Science

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Science 1(1), 74–86 (2010).
[CrossRef]

J. Am. Chem. Soc.

E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996).
[CrossRef]

J. Appl. Phys.

K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984).
[CrossRef]

G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982).
[CrossRef]

J. Lightwave Technol.

J. Non-Crys. Solids

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006).
[CrossRef]

J. Non-Cryst. Solids

S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Optoelec. Adv. Mater.

P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelec. Adv. Mater. 7, 1759–1764 (2005).

J. Vac. Sci. Technol. B

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003).
[CrossRef]

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[CrossRef]

Nature

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995).
[CrossRef]

Opt. Express

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

B. B. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
[CrossRef] [PubMed]

J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Rep. Prog. Phys.

C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[CrossRef]

Other

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer Verlag, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a waveguide y-splitter integrated onto a QCL package. The substrate for the waveguide is attached to the Cu block heat sink/bottom-side electrical contact, which allows for the waveguide to be fabricated directly onto the QCL.

Fig. 2
Fig. 2

Waveguides by MIMIC. (a) A PDMS mold with relief patterns is placed on a substrate to form micro-channels. (b) As2S3-propylamine solution (2g/10mL) is deposited at the channel inlets and flows into the channels by capillary action, at room temperature. (c) After the sample is baked (for 1 hr at 60°C and 2 hrs at 80°C, under vacuum) and the As2S3 solidified, the PDMS mold is peeled away.

Fig. 3
Fig. 3

Waveguides by µTM. (a) A PDMS mold with relief-pattern is attached to a microscope cover slip, which serves as a rigid backing. (b) As2S3-propylamine solution is spun-coat onto the mold surface, at room temperature. (c) A LiNbO3 substrate, 0.5mm thick, is pressed down onto the As2S3 film. It adheres by capillary forces. The sample is baked to solidify the As2S3 structures. (d) The PDMS mold is removed. The As2S3 film stays adhered to the LiNbO3 substrate.

Fig. 4
Fig. 4

(a) SEM image of integrated As2S3 waveguide and QCL. The waveguide is aligned to the right-most laser ridge. The waveguide bend has r = 1mm, and a total length of 7mm. (b) Light output (λ ≈5µm) measured from integrated waveguide-laser. Parts of this figure reproduced from [29].

Fig. 5
Fig. 5

Large area patterns and single mode waveguides. (a) SEM image (45° tilt) of an array of 7.5µm wide As2S3 waveguides on a LiNbO3 substrate. (b) SEM image (top view) of waveguides configured as a y-splitter. Width of branches is 5µm. (c) SEM image (45° tilt) of 2.5µm wide by 4.5µm high waveguide. A thin As2S3 slab film surrounding the waveguide is visible. An area of a slight delamination of this film from the substrate is visible to the right of the waveguide. (d) Simulated mode field profile in 2.5µm x 4.5µm rib waveguide at λ = 5µm.

Fig. 6
Fig. 6

Cut-back measurement. Losses of rib waveguides of varying width, with height = 4.5µm, on a LiNbO3 substrate. The waveguides are aligned to and end-fired coupled to a QCL emitting at λ = 4.8µm. Each point represents averaged data from at least 5 different waveguides. Propagation loss of the 2.5µm wide waveguide is given.

Fig. 7
Fig. 7

(a) SEM image of particulates formed on an As2S3 film surface after exposure to ambient light, air, and humidity. (b) AFM height scan of top surface of waveguide. RMS roughness is 0.75nm. (c) Trace of waveguide edge derived from top view SEM images of a 2.5µm wide waveguide. (d) Calculated loss of 2.5µm x 4.5µm rib waveguide as function of σr for λ = 5µm. Lc is fixed at 441nm.

Metrics